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Effect of composition changes on the structural relaxation of a binary mixture
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Within the mode-coupling theory for idealized glass transitions, we study the evolution of structural relax-
ation in binary mixtures of hard spheres with size ratias the two components varying between 0.5 and 1.0.
We find two scenarios for the glassy dynamics. For small size disparity, the mixing yields a slight extension of
the glass regime. For larger size disparity, a plasticization effect is obtained, leading to stabilization of the
liquid due to mixing. For alls, a decrease of the elastic moduli at the transition due to mixing is predicted. A
stiffening of the glass structure is found as is reflected by the increase of the Debye-Waller factors at the
transition points. The critical amplitudes for density fluctuations at small and intermediate wave vectors
decrease upon mixing, and thus the universal formulas for the relaxation near the plateau values describe a
slowing down of the dynamics upon mixing for the first step of the two-step relaxation scenario. The results
explain the qualitative features of mixing effects reported by Wiliams and van MEgeys. Rev. E64,
041502(2001)] for dynamical light-scattering measurements on binary mixtures of hard-sphere-like colloids
with size ratio5=0.6.
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[. INTRODUCTION ated and compared with results from scattering experiments
[3]. The quantitative study of model systems allows one to
The study of glass-transition phenomena in dense colloipredict general, while nonuniversal, trends that arise in cer-
dal suspensions has received much attention during the patstin classes of glass formers. Such a project has been carried
years. Such systems are well suited for a test of theoriesut for molecular liquids, where the known differences of
since the particles’ properties can be tuned within a broadeorientational relaxation for angular momentéim 1 and 2
range. In particular, one can produce mixtures with particlegould be explainef6,7]. The work presented here in a simi-
of different sizes and observe effects of changing compositar way aims to explain the general trends occurring in a
tion or size ratio. Recent experimental work of Williams and mixture when changing its composition or the size disparity
van Megen[1] has shown that even in the simplest of suchof its constituents. Our discussion, motivated by the cited
systems, namely binary hard-sphere mixtuldSM), inter-  |ight-scattering experiment§l], focuses on binary HSM
esting mixing phenomena appear for the dynamics close tg;ith not too large size disparity in the species, close to the
the glass transition. Three effects have been reported 90iNgass-transition density.
over from a one-component to a binary system containing U £qr 4 derivation of the MCT for mixtures, the reader is

to 20% by volume of smaller spherds) a shift of the glass  otorreq 1o Ref[8]. The theory has already been applied to

transition to higher packing fra_cuon(su) an Increase in thg analyze computer-simulation data for a binary soft-sphere
plateau values of the correlation functions at intermediate

times, connected to an increase in the glass-form factors, anﬂg(lteugﬁla[% :arlrallizgrymo%jeerll%?rg-gﬁzzsmgéﬁuﬁgl;ﬂt,wg-
(iii) a slowing down of the initial part of the relaxation to- y . ! .
wards this plateau. component metallic melf13]. Also, properties of binary

In this paper, mixing effects in binary HSM are investi- 1SM in the limit of large size disparitj14-18 and of
gated in the framework of the mode-coupling theory of theCharged hard spheres, pgrugularly in their low-density region
idealized glass transitioMCT). The study of glass- _[19—2]], haye bee_n studied in the framework of MCT. Mix-
transition phenomena in colloidal suspensions that are goold effects in a binary HSM have been addressed recently
realizations of one-component hard-sphere systems has resing a standard liquid-state mode-coupling approximation,
vealed that MCT describes much of the experimental facts iilbeit for states of such low density that glassy dynamics
these case$2,3]. MCT makes general predictions for all does not occuf22,23. MCT equations for mixtures have
glass-forming systems, independent of their underlying mibeen derived recently within a nonlinear hydrodynamics
croscopic properties, be they one-component or multicompatheory[24]. The found equations are very different from the
nent systems. Thus, a universal glass-transition scenario hases analyzed here, and a connection of their implications
been established, involving scaling laws and power-lawwith the light-scattering datgl] was not discussed.
variations of time scales. These properties have been found The paper is organized as follows. In Sec. Il, we summa-
in many, not only colloidal, systems, as reviewed in Refsrize the basic formulas specifying the model under study.
[4,5]. But MCT is also able to derive detailed results depend-Sections 1ll and IV discuss our results for the fluid-glass
ing on the specific interactions of a system. The aforementransition diagram and the glass-form factors, respectively.
tioned hard-sphere colloids are a paradigmatic example foWwe demonstrate in Sec. V that these lead to two qualitatively
which, among other things, the wave-vector dependence dfifferent scenarios for the dynamics close to the glass tran-
the Debye-Waller factors in the glass state has been evalgition. Section VI summarizes the results.
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IIl. DEFINITION OF THE MODEL Here, p is the total number densityp=q—k, and
A. General equations of motion V,.z5,(d,K,p) are vertices quantifying the coupling of a force

A classical Scomponent fluid ofN spherical particles fluctuation ofawaveavectoq to density-fluctuation pairs with
shall be considered. The fluctuations of the partial numbewave vectork andp, respectively. The vertices are given by
densities shall be denoted €§(ﬁ)=2kexﬁidﬂf)]/\/ﬁ, o the equilibrium structure of the system in terms of the
=1,2,... S, where the sum runs over i, particle posi- Ornstein-Zernike direct correlation function,z(q) and
tionsr{*) belonging to the species. From this, the partial Static three-particle correlations. The latter shall be expressed
density correlators are constructed, written @gg(q,t) N terms of theS, 5(q) using the convolution approximation.
—(0.(@)]es(G 1)) Here, (A|B)=(5A* 6B) with sa=A  One thus arives at
—(A) denotes a scalar product in the space of dynamical . . .
variables. Angle brackets indicate canonical averaging foVaa’«7(Q,K,p) =(QK/q)Cyq(K) Squr+ (AP/A)Caar(P) Saqr -
temperaturd. The time evolution is generated by a Liouvil- (1d)
lian L: Qa(ﬁ,t)=exp[i£t]ga(ﬁ). Since thep, are spatial
Fourier transforms of a real density variable in an isotropic, A few remarks to these equations might be in order. The
translational invariant systen,4(q,t) is real, even int, ~ solution to Egs.(1) exists for allt=0, and it is uniquely
and it depends on the wave vector only thronghlﬁ|. An  determined by the initial conditions. For a system with col-

evaluation of the density correlatoss, 4(q,t) is the major loidal short-time dynamics, the correlation functiobgq,t)
aim of this paper. are completely monotonic functiorf®5]. This property is

The starting point of the theory is the exact reformulationPreserved by the specified MCT approximation. In detail, it
of the equations of motion using the Zwanzig-Mori tech- implies the following. The matrice®(q,t) are positive defi-
nique. Considering the limit of a system of colloidal particlesNite, written agb(q,t) >0, for all timest and at allq; and for

undergoing Brownian dynamics, this equation reads the time derivatives, there holds-(L)'3;®(q,t)>0 for all
_ I=1,2,....Furthermore, the solution depends smoothly on
7(q)®(q,t)+S(q) " 'P(q,t) Sap(q), Tup(d), @andV,s,(q,k,p) for any fixed finite time

. interval. At t—«, the bifurcations in the long-time limit
+f M(q,t—t’)d(q,t’)dt' =0. (13 F(q)=|imt_.>a.c<1>(q',t) may occur at critical points called
0 glass-transition singularities. Tlke,z(q) are called the glass

. . . L form factors and they are solutions of the equation
It is to be understood as a matrix equation as is indicated by y q

the bold symbolsS(q) is the matrix of partial structure fac-

tors defined bﬁaﬁ(q)=<ga(ﬁ)_|gﬁ(c_§)>. The short-time be-
havior of the correlators is given by®(q,t)=5(q)
—(q) "Yt|+ O(t?), where 7(q) is a symmetric positive
definite matrix of relaxation times. It shall be specified

in terms of short-time diffusion coefficientd? as .

“a point FO(q)=5(q). The sequenceF(™(q) converges
7ap(0) = 1/(°D) S The memory kerneM(q, t) IS GIVEN monotonically toward$(q). For sufficiently small vertices,
by the so-called fluctuating forced) .5(q,t)=(ksT)*(Xa/  one has the liquid solutioRi(q) =0, while the glass is char-
m,) (Xg/mMe)(QLj (q)|R' () QLj4(q)). Here, Q is the acterized byF(q)#0. Solutions corresponding to critical
projector perpendicular to the number densit@§(ﬁ), and  points shall be denoted by a superscdpto understand the
the longitudinal parts of the number current densitiesbifurcation scenario, one needs to discuss the critical eigen-
4j.(A)=Lo.(q). R (t)=exdiOQLOt] is the reduced evo- Vector of the linearization of Eq2a), H(q), given by
lution operator. Then, are the masses of the species labeled
by a andx,=N,/N are the number concentrations. H(a)—2[S*(q)—F () ]FF*H](q)[S*(q)—F*(q)]=0.

Equation (1a) is complemented by an approximate ex- (2b)
pression for the memory kernel. The MCT approximation for
this quantity follows from a straightforward generalization of This eigenvector is nondegenerate, which implies that all

F(a)=S(q)—{S(a) '+ F[F,Fl(a)} *. (2a)

In particular, the correde(q) can be determined through an
iteration scheme, FW(q)=S(q)—{S(q) *
+ FFO-D EO-Dy@)}~t, n=12,..., with starting

the one-component ca$@] and gives the polar form MCT bifurcations belong to the typ&,, =23, ... ,intro-
duced by Arnol'd[26]. Also, one can chooskE(qg)>0. All
M(q,t)=F [®(t),P(t)](q) (1D of the preceding remarks apply to the general case of matrix-

valued MCT equations; they are not affected by the precise

of a symmetric bilinear form of the density correlators X ) )
y y form of the vertices entering Eqlc). Proofs of the cited

1 o L mathematical properties of Eqgdl) and(2) can be found in
Foupl @D, 0@](q)= XX > Vaaror(Q,K,p)  Ref. [27]. In this paper only the simplest bifurcations, i.e.,
20" %aXp o'p'a"p" K those of typeA, are discussed, where a jump occur i)

(1) 2) - oo from 0 to the critical value=¢(q)>0.
X P i ()P g (P)V g (0K, P). There is an important implication of the cited general re-
(10 sults that can be substantiated in complete analogy to the one
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obtained for one-component systef28,29. There exists a The glass, different from the liquid, is characterized by a
time scale such that one can express the solution of @j.  finite shear modulus. A formula similar to EG) is obtained
for t>tq in the form for the shear moduluM$ at the glass transition,

_all2 T\ all2
Pan=sHaOHeLSHa, o M= (okaT)Iim S, X, FISIF Flaxs.  (6)

~ —oaB
where t=t/t,. The time scalet, depends smoothly on ’
S.5(Q), Tup(q), and Vaﬁy(ﬁ,lz,ﬁ). The sensitive depen- Here, the MCT expression for the transverse fluctuating-
dence ofd on the control parameters is described by theforce kernel F7(q) is obtained fromZ(q) by replacing in

completely monotonic functiomp(q,t). The latter is deter- Eq. (10) the vertices by

mined, up to some arbitrary time scdlg, through the equa- T . o
tion Vaa/aﬂ(qakyp):(qu/q)Caa’(k)ﬁaa”

d [t +(q"P/A)Crrar(P) S - @)
$(a.0=m(q,0)~ g | ma,t-t)g(q,t)dt’, (3

In this formula,q" is a vector of lengthy perpendicular ta.
obeying the initial condition
B. The binary hard-sphere mixture
lim(t/t,)Y3¢(q,t)=1. (30

0 The general theory shall be applied to binary hard-sphere

mixtures (HSM), consisting of larggA) and small(B) par-
Here the kernein(q,t) is given by the mode-coupling func- t|cles_. If da,_azA,B denote_the particle dlametersa, the
tional [Eq. (10)] as packing fractions of the species read = (7/6)(x,0)d,,

and the total packing fraction is given = ¢+ ¢g. The
m(q,t)=SY4q) X F SY2¢(t)SY2, SY2¢(1) SY?](q) SH4q). thermodynamic state is characterized by three control param-

(3d)  eters. Let us choose them to be the total packing fraction

the size ratiod=dg/d,<1, and the packing contribution of
This means thatp(q,t) is determined by the quantities en- the smaller species<g=¢g/¢. Whenever composition
tering 7 only, i.e., by the parameters specifying the equilib- changes are considered in the following, a variatiorgofor
rium structure. In this manner, MCT justifies the concept offiyxeq @ and & is to be understood. This in turn implies the

structural relaxation as opposed to, e.g., transient relaxatiopymper concentration of the small particles to vary as
The latter, be it Brownian or Newtonian, merely enters the
scalet,. In particular, this implies that details of,5(q) do Xg/&®
not affect the structural relaxation apart from influencigg Xp=——F=—= .

Let us also note the formulas for the longitudinal and 1+xg(1/8°~1)
transversal elastic moduli of the mixture. They are given

through Green-Kubo relations involving the total mass cur-1h€ Pprocedure is somewhat in between a true addition,

rents[30,31). One defines the projectad,, as projecting which would increase both total density and total packing
N ~ d the lonaitudinal ~ fraction, and a replacement of a certain amount of large
out @.(q) _an e longitudinal mass current](q) spheres by the same amount of smaller ones, which would

=X,m,j.(q) together with the corresponding reduced re-reduce the total packing fraction. For sufficiently smajl
solventR{;p(2). The latter is the Laplace transform for fre- there appears a percolation threshold for the motion of the
quency z of the corresponding evolution operat®/y(t) small particles in the glass formed by the large ones. This
=exdiQupLOupt]. For the longitudinal viscosity, this transition and its precursor phenomena shall not be consid-
yields [30] ered in this paper.
Static structure input for our model is taken from the
Lo.e 1 - . Percus-Yevick(PY) approximation[32,33. More accurate
7= lim lim; — —{(QupLID|Rip(2) QupLI(Q))- solutions of the Ornstein-Zernike integral equations for hard-
2-0q-0"8" sphere mixtures are available. Yet, one knows from the one-
) component MCT that improvements aiming at, for example,
thermodynamic consistency have little influence on the
glassy dynamics. Unfortunately, the quality of the PY ap-
proximation at the desired high packing fractions is un-
known. It is known that large errors of the structure factor
can occur if one goes over to large values o [[24], but
this case is excluded from our discussion.
With the structure factor and the direct correlation func-
OM{ = (kgT) lim E Xa]:ZB[FC,FC](q)xB_ (5) tions given, the vertices in Eq6ld) and(7) are well-defined
q—0aB functions of the wave vectors and matrix indices. Hence, also

®

At the bifurcation singularity, a nontrivial long-time limit
F°(q) implies a pole at zero frequency®®(q,z)~
—F%(qg)/z. According to this, the longitudinal modulus
shows a discontinuityM{ at the glass transition. Rewriting
Eq. (4) in terms of the MCT projecto®, one gets

021502-3



W. GOTZE AND TH. VOIGTMANN PHYSICAL REVIEW E 67, 021502 (2003

the mode-coupling functionaF in Eq. (1¢) is defined as a ¢° [ ' ' ' ' ' ' ' '
triple integral over the components lof and the same holds 0.3
for the functional F'. After introduction of bipolar coordi-

nates and using rotational symmetry, tﬁeintegrals are |
transformed to double integrals ovier |k| andp=|q—k|.  ¢s23

After performing theq— 0 limit in the functionals, the zero-
wave-vector limits entering Eqg5) and (6) are reduced to 9526
one-dimensional integrals ovér As a next step, the wave |
vectors are reduced to points on a gridwfvalues. The grid |
is chosen asqu=qo+E1Aq, with qp=0.2, Ag=0.4, and o522
g=0,1, ... M—1, unless otherwise stated. The integrals are

. . 0.5
replaced by Riemann sums. The resulting formulas are the |
same as explained explicitly before for the one-component, 54|
systemq 35], but additional sums over matrix indices occur.
As a result, the cited equations refer to ones for setdof 0.51¢4
matrix correlators, wherg serves as a label for the correla-
tors. To complete the specification of the equations, the0-514

0.524

short-time diffusion constants are taken according to the o o0z 04 06 03 1
Stokes’ IaW,D3=C/da. The unit of time is chosen so that Xy
C=0.01.

For the simple hard-sphere system, it was found that a FIG. 1. Liquid-glags tran§ition diagram of a binary hard-_sphere
choice of M =100 is sufficient to avoid cutoff and discreti- Mixture (HSM) for size ratios $=0.5 (triangles, 6=0.6 (dia-
zation effects for the resulf85]. Our work was done mostly Monds, 6=0.7 (squarei and 5=0.8 (circles, plotted as critical
with M =200, implying a cutoff wave vectoq*d,=79.8 total packing fractionp® versus packing contribution of the smaller

- ] AT -0 . ~ . .
This enables us to handle size ratiosssf0.5 with the ac-  SPeCiesXs=¢g/¢. Full lines are guides to the eyes. The dashed
curacy used earlier for the simple system. Thus, Etg— lines indicate results obtained from tripling the numiérof grid
(1¢) are 600 coupled integro-differential equations for Googggﬁ frfsrﬂnhg Zt?t(;(i)n;%Mu; GO?iggdsteZet:;ttfi? (;'2; ”fss:o,e
correlators, and Eq2a) formulate 600 implicit equations for g =100; '

the 600-glass form factors. The latter equations are solved b blves the equations up ta,2 This procedure is repeated

the iteration mentioned above. Thereby, one gets the form_ . : , .
factors as discussed in Sec. IV. Shifting the value for theunt|I the correlators reach their long-time asymptote. Details

. . . o " ) are explained, e.g., in R€f36]. Typically, the figures in this
packing fractionp, one identifies the glass-transition points. Y a
The linear equation for the nondegenerate eigenvét{q), paper have been calculated with=10 ° and N=256. Let

[Eq. (2b)], is solved by a standard routine. This eigenvectorus point out that Eqsi1)—(7) are completely analogous to

is used to calculate the asymptotic solutions discussed iwe ones discussed repeatedly in the previous studies of one-

Sec. V B. The critical glass form factors are substituted intocomponent systems. Also the num'erlcal methpds applied for
Egs. (5) and (6) so that the contributions to the moduli dis- the solution are the ones used earlier for the simple case. The

. additional complication here is the handling of matrices; but
cussed in Sec. Il can be calculated. this is straightforward though numerically more demandin
The closed set of Eq$la)—(1c) as well as Eq$3a)—(3d) 9 9 y 9-

for the time dependence of the correlators are solved by a
method adapted to this special kind of Volterra problem. The Ill. TRANSITION DIAGRAM

solutions of Egs(1) yield the correlators to be compared s through the liquid-glass transition surface in the
with the cited light-scattering data. The solutions of B8D) 106 dimensional control-parameter space for the binary

are used in Sec. V B to separate structural relaxation from gy are depicted in Fig. 1. To assure that the results do not

tﬂe transient d)f/namlci‘s. To p_rgacceed,. one m{t{lodu.ces "Z‘rﬁ”d O§‘eriously depend on the discretization used, we show as well
the time axis of equal step sizeconsisting oiN paints. The glass-transition points calculated #+ 0.6 and 0.8 from

time derivatives in Eqs(1a) and(3b) are replaced by differ- the model withM =600, Aq=0.4/3, o= 0.2/3. In addition,

ence relations and the_convolqnon mtegr_al_s by Rmmanqor 6=0.6 the dotted line exhibits the result calculated with
sums. One gets a recursion relation determining the solut|oncc,utoff q*d,=39.8 andM = 100, which are the discretization
AT 9. - ,

for timet,, ;=h(n+1) from the valueg,, I<n. The initial ) _ N
1= ) ' arameters used in Rdf35]. One infers that forxg=<0.3,

values are taken from the short-time asymptote, given by < < o o
®(q,t)— S(q) ~ — 7{q) "1t or Eq.(3¢), respectively. Because rlesutljtlsscretlzatlon would be sufficient to produce reasonable

of the scale invariance of the equations of structural relax- ! . . . . .
ation, the value of, does not matter. One has to make sure For fixed size ratiod<0.65, the critical packing fraction

that the results obtained for<t<t, remain stable within first increases upon increasing. Sincexg=0 andxg=1
the desired accuracy upon doublingr halvingN. Then one ~ both represent monodisperse hard-sphere systems, one gets
carries out a decimation by settifg—>2h. Thereby, one ¢%(xg=0)=¢%(xg=1). Thus, the liquid-glass transition
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FIG. 2. Maximum relative increase and decrease of the critical FIG. 3. Total structure factoB(q) =X ,5S,5(q), calculated in
packing fractiomA ¢°(8), according to Eq(9), as a function of the the Percus-Yevick approximation for binary mixtures with
size ratiod (crossek together with experimental data for random =0,515,§(B:0_2 and three values df.
loose packingtriangles, reproduced from Reg#1], cf. tex). For
the MCT critical packing fraction values, two symbols are noted formixtures have been presented. These are operationally de-
those § where a maximum and a minimum different from the fined as the random packing fractions obtained when pouring
=1 value could be identified. spheres into a container without subsequent densification

through shaking. One observes that bdilp®(5) and the

lines for 5=0.65 exhibit a maximum at some intermediate data follow the same trend. Note that we get negative values
values ofxg .. It is well understood that big particles moving for 0.65< §<1. In Ref.[41], no such effect is discussed, but
in a liquid of much smaller ones experience an effectiveit is reported that there seems to be no observable change in
attraction[37] that is of purely entropic origin. Such a short- the data. There is no precise theoretical definition of the con-
ranged attraction leads to a stabilization of the liquid phasegept of random loose packing. Nevertheless, the reported
as was explained earli€88—4Q. Our result is a direct anal- values can be taken as a quantization of a mixing effect, i.e.,
ogon of this depletion-attraction effect. Similarly, from the of modifications of the random cage structure. The fact that
discussion of polymer melts it is known that the introductionthe variation inA¢® with & agrees with these experimental
of smaller components into the system typically decreasefindings supports the conclusion that MCT is able to capture
the viscosity, i.e., drives the system further into the liquidthe change in the average cage structure induced by the pres-
phase; an effect sometimes called “plasticizing.” Therefore,ence of the second component.
the effect found here is an entropically induced plasticization The results from above suggest that the change of the
effect. glass-transition point with composition can be understood by

For less-disparate-sized mixtures, the theory predicts alpoking at the geometrical structure of the system. This in-
inversion of the effect described above. An example is showifiormation is reflected by the static structure factors that com-
in Fig. 1 for 5=0.8, where a decrease of with increasing prise the relevant input for the MCT vertex in E@.d). In
Xg Up to some minimum point is observed. This is in accor-Particular, itis understood that tieevector region around the
dance with similar MCT resuilts for a binary soft-sphere mix-first sharp peak ir5(q) is important for explaining the MCT
ture [9]. It means that the introduction of disorder due to a9!@ss transition. Figure 3 shows this region for the total struc-
small polydispersity of the particles stabilizes the glass statduré factorS(q)==,4S.4(q) at fixed packing fractiony
The transition diagram is not symmetric with respect to=0.515, compositiorxg=0.2, and different. One notices
xg—(1—Xg); our theory predicts for 0.6556<0.8 two trends caused by decreasifgviz., a decrease in peak
“ S'-shaped transition lines. height and an increase in its largewing. The m_terplay

To get another view on the transition diagram, let us dePetween these two trends is responsible for the shiffinAt
fine the relative change 06° with respect to the one- larger &, the increase in the wing is dominant and stabilizes

component case as the glass, i.e., it reduces® with respect to the one-
component system. But ai<0.65, the reduction in peak
Ap®(8)=[¢%(8,x5)— @5l 0§ 9 height, equivalent to a weakening of the intermediate-range

. order, overwhelms this trend. This effect stabilizes the liquid,
Here,xg are the points at which a maximum or a minimum j.e., increasesy®. In all cases, the peak position shifts to
occurs ing®(xg) for fixed &; ¢5~0.5159 is the critical pack- higherq, indicating that, on and average, particles are closer
ing fraction of the one-component system. The resulting valtogether in the mixture than in the one-component system; an
ues are plotted in Fig. 2 together with the data taken fromeffect typical for the introduction of effective attractive inter-
Ref.[41]. There results foA ¢(8) of several experiments for actions[40].
random loose sphere packings in two-component steel-ball Another way of looking at the local structure of the HSM
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255

1.5

0.5

rid A

FIG. 4. Results within the Percus-Yevick approximation for the
partial pair correlation functionga A(r) andgag(r) of binary HSM
at<p=0.516;§(B=0.2; andé=0.9 (solid lineg, 6=0.8 (dot-dashed
lines), and 6=0.6 (dashed lines Curves forgaa(r) have been
shifted up by 1.0 for clarity.

is provided by the partial pair distribution functioggg(r).
These have been obtained by numerically solving the
Ornstein-Zernike equation in the domain using Baxter’s
factor function for the PY closure. The results are shown in

Fig. 4 for gaa(r) andgag(r), again at fixedy andxg for
various 8. Here, both quantities vary more or less in phase
for 6=0.7, indicating that the local ordering of the one-  FIG. 5. Critical glass form factork () =F¢_(q)/S..(q) of a
component system is only slightly disturbed. One infers thebinary HSM with size ratios=0.8 for the largglupper panéland
B particles to be responsible for smaller average particle dissmall (lower panel particles. The packing contributions of the
tances, thus favoring arrest of the structure. For smaller small spheres ame;=0 (solid lineg, 0.05(plus symbolg 0.2 (dia-
the one-component system’s structure is modified more senonds, 0.6 (circles, and 1.0(dashed lines In the upper panel,
verely, sincegaa(r) and gag(r) no longer vary in phase. results for small at xg=0.01 (crossesand 0.1(squaresare also
Instead, “chemical ordering” effects can be seen, and theyhown. The dash-dotted line in the upper panel demonstrates the
are responsible for the shift of the glass transition to highefinear interpolation between the cases=0 andxg=1 for qd,
packing fractions. =6.

Let us stress that the variation @f with concentration,

while being small in total, nevertheless has a large impact on

. . . i} .
the dynamics close to the glass transition. This holds sinc&2/izedB particle. Itis the Lamb-MBbauer factofg(q) of a
relaxation times of the liquid in this region depend stronglyB Particle in the hard-sphere systemAparticles. A similar

on the distance to the critical packing fraction. We shall recustatement holds with the role ok and B particles inter-

to this point in Sec. V A. changed, i.e.,fZ(q):fAA(q,%Bal), but then the tagged
particle is of the size ¥ in units of the diameter of the
IV. GLASS FORM FACTORS surrounding hard spheres’. If the packing fractignde-

The spontaneous arrest of density fluctuations within the' ©ases towards the transition valg thef,,(q) decrease

glass state is quantified by the glass form facfogg(q). In towards their critical valuesf‘;a(q). These values are of

principle, these quantities can be measured in a scatterifggrticular relevance since they specify the so-called plateau
experiment via the intensity of the elastic line in the crossvalues of the correlation functions of the liquid for states
near the liquid-glass transitio2]. This will be discussed

further in Sec. V.
Figure 5 shows the critical Debye-Waller factors for small

faﬁ(q):FaB(q)/ Seal(@)Ss5(0), (10) size disparity,6=0.8, gnd' variou'siA(B. One notices an.in—
crease of the values with increasixg for almost allg. This
have the meaning of the Debye-Waller factor for the distri-result can be understood as follows. With no second species
bution of species. In the limitxg— 0, fgg(q) is the spatial ~ presentf§(q) matches the Debye-Waller factor of the one-
Fourier transform of the density distribution of a single lo- component systenif(q), shown by the full line in the upper

section. The diagonal elemenfga(q) of the normalized
guantities,
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1

panel. On the other hand, as mentioned above&@epl, .
the quantityf}iA(q) crosses over to the tagged-particle quan- Faa@r
tity of a bigger sphere in a surrounding fluid of smaller ones, 038
5°(q). At g—0 andXg=0, momentum conservation im-
pIiesf,iA(q—>0)<1; while for§<B—>1, particle conservation
and momentum relaxation for the tagged particle require
f2°(q—0)=1 [42]. By interpolation, one gets an increase in

0.6

AgA(q) with increasing>A<B at smallg. For largeq, on the

other hand, the Debye-Waller factor in a one-component sys

tem is oscillating around the Lamb-Mbauer factor of a
tagged particle with equal diameter. The Lambfibauer

factor in turn can be approximated reasonably by a Gaussiai

5(q) =exd —(qr9?], whererg is the particle’s localization

length[43]. The smaller the localization length becomes, the

bigger the radiusl® of the tagged patrticle is with respect to
the radiusd of the surrounding spherd43]; in particular,
one gets for a tagged particle of diamedétd=1/0.6 (1/0.8,
0.8, 0.6 the valuer$/d=0.041(0.056, 0.095, 0.136 This
implies the distribution of the?jiA(q), given in the limit
Xg—1 by £$°(q) with d%d= 6, to be broader than that in
the limit x;— 0, given byf¢(q).Therefore the width of the
distribution?‘ZA(q) has to increase fof<1 asxg increases

from zero to unity. This is demonstrated in the upper
panel by the dash-dotted line. It represents a simple inter- 05

polation, TS A(q)~f°(q) +[f53°(q)—f°(q)1xg for Xg=0.6
andq>6/d, .

The change ofCBB(q) can be understood along the same

04

f ;B(q) i
0.8

0.6

0.2

FIG. 6. Same as Fig. 5, but for size ratie=0.6.

line of reasoning. But one has to notice that in this case the
localization length of a smaller sphere in a surrounding off2°(q) andf¢(q) as explained above is notably worse, indi-

big ones matters. In particular, one ha§g(q,Xxg—0)
=f3°(qg/8). This yields a width of this distribution smaller
than the one of thé$g(q,xg—1)=f°(q/8). Such an effect
can be seen in the lower panel of Fig. 5 fpd,=7. The
crossover is naturally given by the size of tAeparticles.
Based on the above argument, one expects at sntptiee

inverse trend. But this is only found i?gB(q) for 5=qd,
=<7. Instead one notices that for édgsO.G, theng(q)
follow closely the result foE(B= 0, i.e., they are still close to

cating that this simple picture quantitatively only works #br
not too different from unity. Also more pronounced in this

case are the changesﬁ@s(q) for smallq, going back to the
same reason as outlined above. Let us note in addition that
for both &, the trend noticed for the diagonal elements is also

found for T ag(q) = F a(0)/Sag(q), provided one is suffi-
ciently far away from those where a divergence due to
vanishingS,g(q) occurs.

Macroscopic mechanic stability of the system is charac-
terized by the elastic moduli. The liquid exhibits a longitu-

unity at smallq. This is a consequence of the normallzatlondina| elastic modulus given by the structure factor through

chosen here, since it is dominated by a chang8gig(q) at

smallq. It could be eliminated when discussing, e.g., matrix-

normalized quantitiesf(q) =S Y4(q)F(q)S Y4 q), where

the normalization properly accounts for the overall change i

S(q).

The above argument only depends on the fact &afl,
but not on the precise ratio of localization lengths. Thus it i

quite general in binary HSM. Figure 6 shows the scenario fo
6=0.6, i.e., for a larger size disparity, and indeed one rec

ognizes the same trends as above. Here, the deviations
fSa(q) from the tagged particle’$3°(q) set in faster with
increasingxg than it was the case faf=0.8. But one has to

keep in mind that for smalle$, the changes iriB induce
larger changes in the number concentratign [cf. Eq. (8)].

The description ofﬁ\A(q) as a simple interpolation between

MP=0(kgT)= .pX,S,5(q—0)xg [44]. In the glass, the lon-
gitudinal modulusM, is larger,M, =M%+ 6M_ , due to the

arrest of the structurdEg. (5)]. Figure 7 shows the results

r}or the binary HSM at the transition points féx=0.6, 0.7,

and 0.8 and also the critical shear modullBg. (6)]. All

Squantities are shown in units ofpkgT) in order to more

Ig:learly reveal the effect of composition change. Note that the

total densityo of the system increases and superimposes a

§§e in the moduli one could call an “ideal mixing” contri-
ution. This ideal mixing value is given by the one-

component values,dSM{~56.9 and M$~18.3, shown

through dashed lines in Fig. 7. At intermediatg, strong
deviations from ideal mixing occur. For all investigated
here, the moduli decrease below their one-component values,
indicating that the system becomes softer upon addition of
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plateau values given by the critical glass form factors

T‘Zﬁ(q), and power-law relaxations towards and from the pla-
teau, governed by anomalous exponents. If the total packing
fraction is increased towards the critical valg® with other
parameters kept fixed, a drastic increase in the relaxation
time 7, of the slowest decay process is obtained that is typi-
cal for glass-forming liquids.

In this section, we shall focus on the general, but nonuni-
versal features of the glassy relaxation in the binary HSM. To
demonstrate the changes induced by different compositions,
let us investigate a horizontal intersection of the transition
diagram of Fig. 1 and consider a change of the composition

xg for the total packing fraction fixed at=0.515, i.e., at a
value slightly below the glass transition of the one-
component hard-sphere system. As above, the two different
general scenarios, large and small size disparity, shall be
demonstrated using the valués=0.6 and 6=0.8, respec-
tively.

A. General features

The dynamics foxg=<0.2 is demonstrated by Figs. 8 and
9 for the AA and BB correlation functions. We chose the

wave vectorq=5.4/d, below the peak irf}iA(q); it corre-
sponds roughly to the one used in the light-scattering experi-

ment of Ref.[1]. The normalized correlatorsh,,(q,t)
10 L ) | . L ) L L = ,.(0,1)/S,.(q) cross their plateau valuéﬁa(q) at cer-

tain times, sayt,(q), ¢..(q.t.(q))=71¢,(q), which are
marked by filled diamonds in the figures. Close to the tran-
sition, the correlators are close to this plateau for a large time
interval. This is a manifestation of the cage effect. In a
leading-order approximation fap®— ¢ tending to zero, the
time scalet,(q) neither depends o nor onq [42]. The

) . . ; independence af is demonstrated to a good approximation
smaller particles for size ratias=0.8 (circles, 0.7 (squarel and 46 fiqres. As explained in connection with Figs. 5 and 6,
0.6 (diamonds$. The dashed lines indicate the corresponding ideal
mixing values evaluated for the one-component system. the plateau increases with increasigand the increase is
more pronounced for the larger majority partickeshan for
the smaller minority particleB.
The decay of the correlators below the plateau is referred

wk)

FIG. 7. Isothermal longitudinal elastic modulM{ , increase of
the longitudinal elastic modulus at the transition poifid; , and
transversal elastic modulid$ at the liquid-glass transition points
in units of ok T as functions of the packing contribution of the

smaller spheres. The effect increases with decreasany it

is of the order of 40% fob=0.6. Itis partly connected with . i
! ° 'S partly w to as thea process. A characteristic time scalg(q) for this

a corresponding increase in compressibilitys 1/M° . In- . .
deed onre): obse?ves for the givénm?nima in a,iltthre(Le quan- process shall be defined by specifying 90% of the decay:

— zc ;

tities at roughly the sameg . Let us nevertheless point out i;?rgghzas(?r)m)t;eofilLarﬂé(sq)l.igheosg tllr:ri\ essa;eerr:?:g?agsotﬁgp
that apart from this thermodynamic contribution to the soft- 9 9

ening of the glass, mode-coupling effects still are necessar€ a-relaxation scale increases with increasieg This re-

to explain the moduli ford=0.6. This can be inferred from flects the fact that with i increasing, the state corresponds to
the crossing of thévl-versusxg and SM¢-versusxg curves & smaller distance from the transition pojpompare Fig. 1

that is absent irME. The scenario fop=0.6, exhibited in Fig. _9, appears more

subtle. In this case, the glass-transition diagram implies the

distance to the transition to increase with increasipgthus
leading to faster decay on thetime scale. But the effect of

Close to an ideal glass transition, the essential aspects @icreasing plateau values with increasigwas seen above
the dynamics are described by a universal scenario. This sc& occur for all§. The combination of these effects leads to
nario has been discussed comprehensively for onea crossing of correlators, as has also been observed in experi-
component systen{85]. The results of Refl.27] assure that ment[1].
these universal results are shared by the dynamics of the In a dynamical light-scattering experiment, one does not
HSM. In particular, a two-step decay process arises, wittmeasure theb ,5(q,t) directly. Rather, one measures a sum

V. DYNAMICS
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0.6 0.6
04 04

0.2 0.2

2
10g10 t l°g10 t

-2

FIG. 8. Normalized partial density correlation functions  FIG. 9. Normalized partial density correlation functions
Gaa(@) =D ,(0,1)/S,4(q) for a=A, B of a binary HSM with  ¢,,(q,t) as in Fig. 8, but for the size ratié=0.6. The dashed lines
size ratio6=0.8 and different packing contributions of the smaller in the upper panel show the short-time approximation according to
particlesxg for fixed packing fractiono=0.515. The wave vectoris Eq. (14) for =0 and 0.2, from left to right.
qda=5.4. The unit of time here and in the following figures is
chosen so that the_ short-time diffusivity Bgzo.omq. Filled Figure 10 shows the results fé=0.6 ands=0.8 atqd,
diamonds mark the intersection of the decay curves with the plateag5_4_ The same qualitative picture as discussed above for

AC i - i i ~ . - .
value f;,(q). The open diamonds mark-relaxation time scales the B(q,t) correlator arises, yet the increase in plateau

74(0) defined by o(d,7.(a))/F;(a) =0.1. values is less pronounced. The reason is a destructive inter-
_ ) ) ) ference effect in Eq(1ll) caused by®,g(q,t)<0. This
weighted with the scattering amplitudbg(q) [45], holds especially fos=0.8, and also for smaller wave vec-

1 tors. Nonetheless, some increase remains in all cases, and

A CHo b va 2 b (@)bs(a) P ,45(q,). (1)  one should be able to see this in experiment. One could be
q aB tempted to analyze such data in terms of a one-component

model. However, this would be misleading. For a one com-

Here, \; is some normalization constant chosen to satisfyonent system, the observed increase of the plat€éiq)
#™(q,t=0)=1. It was a crucial point in Ref1] to be able =2 ,40.(a)bs(a)F;z(q) would imply that the system be-
to vary theb,(q) without altering the dynamics. Thus, three comes stiffer upon increasing the contribution of smaller par-
independent measurements @f(q,t) could be used to in- ticles. But we have seen above from a discussion of the
vert Eq.(11) and therefore to determine the three distinctmechanical moduli that the opposite is the case.
functions®,,4(q,t). The latter are better suited for a com-  Figure 11 exhibitsa-relaxation scales, for the larger
parison with the theory. But let us also demonstrate the dyparticles as a function of mixing. It corroborates the picture
namics for a typical example of the directly measured func-suggested by the glass-transition diagram. Sincexthelax-

tion ¢™M(q,t). If one assumes the colloidal particles to beation close to the glass transition variesgs-(¢°— ¢) 7,

uniform spheres, one gefi45] v>2.5, the variations of, are much more pronounced than
those ofe°. Note that the values af, for different 5 do not
3 qd necessarily coincide a=1. MCT predicts allke-relaxation
b,(q)x ——| sin(qd,/2) — —=—cogqd,/2)|. (12  times7,(q) to be coupled. Thus, the qualitative picture dem-
(ad,)® 2 onstrated in Fig. 11 will also hold for the-relaxation scales
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1
0 () |
0.8

0.6

0.4

0.2

RGN
0.8
FIG. 11. « time scale 7, defined through fj)AA(q,TA)

:0.1ff\A(q) for qdy=5.4 at packing fractionp=0.515, andé

=0.8 (circles, 0.7 (squares and 0.6(diamond$. The lines are

guides to the eye.

0.6

0.4

ban(9,1)=1—g?D'(q)t+ O(t?), (14)

where D'(q)=x(q)D(q) with x(q)=S(q)/Saa(q), and
D(q) and S(q) are the diffusion constant and the structure
factor of the one-component system, respectively. It has al-
ready been noticed in Refl] that x(q)<1 for small g.

FIG. 10. Sum¢™(q,t) of the partial density correlation func- | NUS, One expects a slowing down of the short-time diffusion
tions® ,4(q,t) at wave vectord,=5.4, weighted according to Eq. du€ to mixing in the limit of smal. For the wave vector
(11) with scattering amplitudes,(q) as specified in Eqi12). The  discussed here, however, the effect is small: vdth0.6, ¢

0.2

log ¢

packing fraction is kept constantat=0.515, andg=0, 0.05, 0.1, f0-515’ andqda=5.4, one getsx~0.82 (0.76,0.78) for
0.2 as indicated by the labels. The upper panel shows the results fag=0.05 (0.1, 0.2). The approximations resulting from Eq.
size ratio5=0.6, the lower one fo5=0.8. (14) are shown forxg=0 and 0.2 as dashed lines in Fig. 9.

One infers that this describes the dynamics only for

. N  $aa(9,1)=0.98. Note thatx(q) is not monotonous iXg,
of other experimental quantities such as the viscosities opyt the mentioned increase in the stretching of the short-time
inverse diffusivities. Nucleation rates are also affected by th?elaxation with increasinéB is. Furthermore, at still larger

diffusivities; thus Fig. 11 demonstrates a possible reason fO\R/ave vectors, one hagq)>1 asx(q—o)=1/x,, yielding
nucleation in binary mixtures to vary strongly with Changesfaster short-ti,me diffusion in the mixture. Bu/; ,the slowing

of the composition. down of the relaxation towards the plateau persists also for
largeq, as can be inferred from the numerical solutions. Thus
B. Dynamics close to the plateau we conclude that the change in the short-time diffusion co-
efficients is not sufficient to explain the observed effect.
Let us now focus on the structural relaxation as defined in
ec. IlA. Figure 12 presents solutions of E¢8) for &

=0.6 and differenky at fixed ¢, together with the solutions
reproduced from Fig. 9. The long-time parts of correspond-
ing curves can be scaled on top of each other, since there the
gjynamics depends on the short-time behavior only through a

scaling timet,, as is demonstrated for thg= 0.2 curve. For
®(q,t)=exd —g°D(q)t]S(q), (13)  otherxg, the same observation is valid. Nevertheless, we
have applied the same rescaling as u:sed?geaE 0.2 instead

with the matrixD(q) of short-time collective diffusion con- Of matchingt, andt, independently for differentg . This is
stants,D(q) = (g2 q)) " 1S(q) L. In particular, for a binary done in order to also demonstrate the drift of the scaling time

mixture this yields to(xg) With xg. At short times, all structural relaxation

One notices in Figs. 8 @M a trend for the relaxation onto
the plateau value. This part of the curve, which deals wit
the onset of structural relaxation, displays a slowing down o

the relaxation with increasingg for both cases considered
for 8. In principle, the relaxation in this time window is a
result of both structural and transient relaxation. In a leadin
approximation, the latter is given by
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0.76
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log /1, E
FIG. 12. Structural relaxation dynam|®l|d |ine$ as defined FIG. 13. Exponent parametep\s Corresponding to the points

by Egs.(3) for a binary HSM witho=0.6 andp=0.515, with small  shown in the transition diagram, Fig. 1; symbols indicate0.6
particle packing contributiongz=0.2, 0.1, and 0.05 as indicated. (diamonds, 0.7 (squares and 0.8(circles. The lines are guides to
The dashed lines are the solutions for the same parameters of thiee eye.
general MCT equationgEgs. (1)], with the time scaled to match
the structural-relaxation solution at long times fg=0.2. Let us first explain the leading-order contribution, that is
B ) given by the first line of Eq(15). It demonstrates the so-
curves follow the same asymptdte™, and one notices that ¢gjied factorization theorem, in that it splits the wave-vector
they deviate from one another at roughly 10t, . This  and control-parameter dependence off from the time depen-
demonstrates that the increase of the stretching in the initigdence. It is the critical eigenvectst(q) introduced above
decay with increasiné(B, exhibited for 2.55log((t/t,) that governs the former. The latter is given by a master func-
=5.5, is a result of structural relaxation rather than transienfion g(t) that is the solution of
dynamics.

In order to achieve a deeper understanding of the conclu- d i . .
sions concerning the initial part of the structural relaxation _‘f g(t—t")g(t")dt’=rg(1)?+sgno, (16)
processes demonstrated above, recall that one can derive dtJo
scaling laws for an analytical description of the correlators R A
near their plateau values. This has been discussed comprabeyingg(t—0)~(t/tg) ® The shape functiog(t) does
hensively for the one-component system in H86]. The  not depend on the details of the mode-coupling vertices, but
theory is based on the observation that the liquid-glass trarmenly on the exponent parameter Thus, the factorization
sition is described by aA, bifurcation of Eq.(2a) for the  theorem predicts that all correlators for all models resulting
glass form factors. It is straightforward to generalize thein the same\ can be rescaled to have the same shape, given
theory for one-component systems to the case of interest hegsy the master functiog(f)_
[46]. Let us merely note the basic results necessary to under- The corrections to the specified scaling law are given by
stand the following figures. the terms of orderr in Eq. (15). They consist of a part

For the asymptotic expansion, one identifies a small paparallel to the critical amplitudeH(q), where a new

rameter Loy and, connected to it, a tme scale,  qection-to-scaling shape functitrt) and a constant de-
=to| o] . Here, the critical exponent-0a<1/2is oné  omined by the details of the mode-coupling verticeap-

of the nontrivial exponents of MCT that is calculated from In addition. t i litud dK(
the mode-coupling functional at the transition via the sp-Pear. In addrtion, two correction amplitu B%a) an (a) .
to be evaluated from the mode-coupling functional, are in-

= —_ 2 -
called exponent parametefA =1'(1~a)*/I'(1 - 2a)]. The troduced by the next-to-leading order. They explain that fac-

separation parameter is also calculated from the mode- [~~~ ; . : .
coupling functional, and is a smooth function of the control torization holds with different quality for different correla-

parameters that vanishes at the transition. The conditons tors. One finds th&(q) and Kaa(q) to show the same
>0 ando<0 characterize glass states and liquid states, redualitative variation wittg in the HSM considered here as in

spectively. Setting =t/t,, one obtains an expansion in the the one-component case discussed n FE.%]' 'The only .
small quantity[o| parameter that cannot be calculated within this approach is

the time scaléd,; it is fixed by matching the long-time limit

1/3

®(q,t)—FS(q)=H H+H h()+ of the asymptotic solution at the critical poin®°(q,t)
(@0 =F(@)=H(@)lolg® +Halolhd) +ov] = Fo(q) + H(q)(t/ty) 2+ O(t~23), to the numerical solu-
+K(@)[|olg(h)?=a/(1-))] tion at long times.
o We first investigate the variation of as a function of the
+K(q)a/(1—N)+O(|a]*?). (15 composition, shown in Fig. 13. The exponent parameter is
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FIG.  14. Normalized critical ~amplitudes haa(q) FIG. 15. Asymptotic description of the normalized correlation

=Han(9)/San(q) for 6=0.6 andxg=0.0, 0.1, and 0.2 as indi-  fnctions haa(q,t) for qda="5.4, =0.515, 5=0.6 and different
cated. xg as indicated. The solid lines are the full solutions reproduced

from Fig. 9, but plotted as functions oft,. The time scald, is
larger than the value found for the pure hard-sphere systena,.440& 0.2026, and 0.1385 fag=0, 0.1, and 0.2, respectively.

AM(Xxg=0)=A(xg=1)=0.736. It exhibits a maximum pashed and dash-dotted lines show the results of(E§). up to
smaller than 0.8 fo6=0.6. As a result, the critical exponent order |o|*? and |o|, respectively. The diamondgircles mark
decreases relative to the valae=0.311 for the hard-sphere where the asymptotic solution up to leadifrgext-to-leading order
system. In particular we gat=0.752 (0.778), and from this deviates by 0.01 from the normalized correlator. Curves xgr
a=0.304 (0.291) forxg=0.1 (0.2). As a consequence, the =0.1 (0.2) have been translated along thexis by 2(4) decades
stretching of the decay towards the plateau increases somfr clarity.

what with increasing and decreasing. But this effect is )

rather small and cannot explain the slowing down effectcircle symbols. Fokg=0.1 and 0.2, the range of validity for
specified above. both the leading and the next-to-leading order is seen to

Figure 14 shows the critical amplitudeq) in the case shrink; atxg=0.2 it is, including corrections, only about 2
6=0.6 for the AA correlator. The normalized quantity decades. But to understand this, one has to keep in mind that
Aaa(@)=Haa(q)/SE () Was chosen to match the represen-the distance from the critical point has increased by changing
tation of Figs. 8 and 9. While there is no general trend validfrom xg=0 to xg=0.2 for fixed total packing. Indeed, we
for all g, we note that at the wave vectqe=5.4d, shown get o= —0.0027 (- 0.0066,—0.011) forxg=0 (0.1, 0.2),
above,haa(q) decreases significantly upon increasig. i.e., an increase i by about a factor of 4. Thus, the de-
Let us emphasize that the region @di,=<10 is the one ac-
cessible in dynamical light-scattering experiments on colloi- !
dal systems. Furthermore, let us add that qualitatively the®,,t L
same change witkg , although less pronounced, is observed 0.8 o
in the 6=0.8 case. The decreaseFm‘A yields a flattening of
the ¢(t)-versus-log curve within the time window that can
be described by the leading-order contribution to Edp).
The identified effect is further increased since the time scale
to decreases with increasingxg. One gets to 0.4
=0.4408 (0.2026, 0.1385) forg=0 (0.1, 0.2) and other
microscopic parameters as given above. 0

Let us turn the preceding discussion into a quantitative ™
demonstration by comparing in Fig. 15 the asymptotic for-
mula with the complete solution for thg, 4 correlator. The 0
casexg=0 shows a typical scenario for the one-component
system, where thg/| | term of Eq.(15) describes over three
decades in time of the solution, as indicated by the open FIG. 16. Asymptotic description of the normalized correlation
diamonds. This window of the analytic description is ex-functions@aa(q.t) for qdy=5.4, §=0.6 andxg= 0.2 at differentp

panded by the next-to-leading-order formula by about 1 deas indicated. Lines and symbols as in Fig. 15; open symbols refer to
cade both at short and at long times, as can be seen from tlee=0.515 and closed ones to=0.5185.

0.6

2_

0 1 2 3 4 5 6 7 8
log,, 41,
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creasing quality of the asymptotic description is merely duen Fig. 9 and observed fof= 0.6 in the experiments of Ref.
to an increase ofr. This is corroborated by Fig. 16, where [1].

the xg=0.2 case is repeated together with a point closer to In summary, our work demonstrates that MCT can explain
the transition. For§<B=O.2 and =0.5185, the separation qualitatively the mixing effects on the glassy dynamics of

o P . . colloids observed for the size rati®=0.6. A quantitative
parameter igr=—0.0028, similar to the value discussed in comparison of the results of our theory with the data of Ref.

Fig. 15 forxg=0. Therefore, the regions of validity of the 1] |l be discussed in a subsequent publication. Our theory
asymptotic expansions are similar as well. Indeed, the relsggests to also carry out experiments for a size ratio near
evant quantity specifying the range of validity of the s=0.8 since a different scenario is predicted for that case.
asymptotic expansion is not the size of the logarithmic time |t can be expected that the results of our theory will also
interval, but the size of the decay intervalbaa(q,t) be of some relevance to experiments on glass-forming binary
—f¢,(q)|. Figures 15 and 16 demonstrate that the analytid“etal alloys. The formation of r_netallic glasses can to some
formula, [Eqg. (15)] describes the structural relaxation in extent be unders_tood_by treating the_cqnsutuent atoms as
A o hard spheres, which will then be all of similar s[Z&]. Even
$an(a,1) towards the plateati;,(q) below 0.70, 0.85, and  5gh in this paper we have dealt only with Brownian short-
0.90 forxg=0, 0.1, and 0.2, respectively. This is the regimetime dynamics relevant for colloidal suspensions, it is known
where Fig. 9 exemplifies the slowing down of this decaythat the long-time phenomena connected with the glass tran-
with increasingxg that was reported in Refd]. sition are the same for Newtonian dynami@8,29. Re-
cently, the concentration dependence of the critical tempera-
ture T, was discussed for a computer simulation of a
VI. CONCLUSIONS Co0y00- xZrx model[48]. This simulation used fine-tuned pair
potentials to model the metallic glass former; but if one es-
Within the mode-coupling theoryMCT) for a binary timates the size ratio of a corresponding hard-sphere mixture
hard-sphere mixture, four mixing effects have been identifiedrom the atomic radii of Co and Z19], one getss~0.78.
for states near the ideal liquid-glass transition. First, mixingindeed, in the simulation the cunfg(x) was found to have
suppresses intermediate-ranged ordering effects and this maximum at intermediate, i.e., the glass transition was
leads to an increase of the small wave-vector limit of thefound to occur at smaller coupling strengths. But this corre-
total structure factor(Fig. 3. Equivalently, the compression sponds to a decrease ¢f in the HSM model. A similar
modulus of the liquid decreases. A similar softening of thereasoning holds for computer-simulated Ni-Zr méis].
elastic restoring forces is found for the moduli for compres- | et us add some remarks on the results derived by Har-
sion and shear of the glass near the transition pafRtg, 7).  bola and Dag24]. Their equations, as opposed to the ones
Second, an apparently opposite phenomenon is exhibited byudied in this paper, predict for the glass form factors

the Increase of the Debye-Waller factors, €., a st|ffen|ng Offaﬁ(q) and for the critical packing fraction of the glass tran-
the glass with respect to spontaneous density ﬂ“Ct”at'on§ition ¢°, a dependence on the mass ratig/mg of the two

(Figs_. 5 and & This means P”‘T‘a”'y that mix_ing for fixed' pecies. This result appears surprising because one should
packm.g leads to better Iocal[zat|pn of thg pa_rtlcles. The thir ot expect the equilibrium results for a classical system to
effect is closely related to this, viz., a stiffening of the Cagesdepend on the particles’ inertia parameters. It is obvious that

of the localized particles upon changes of compositionthe limit of vanishing concentratiorg has to reproduce the
These changes are described by the critical amplitude, th% g Xe b

q . h in Fia. 14. Th . teII—shaped Lamb-Mgbauer factor for the glass form factor
ecre?ses :Jp?n T]'X'.ng'. "’lls S ovxf/nhln g. 1%. | (Ia UNIVersais the minority species, as discussed above in connection
MCT formula for the initial part of the structural relaxation, i Fig 5. This result is not obtained in the theory of Ref.
[Eq. (1.5)]’ shows that this leads to a slowing down of the_ 24], which, as a consequence, does not reproduce the ex-
short-tlme part of the glassy dy”f%m'_cs' as de_:monstrated 'Berimental finding of an increase in the correlator’s plateau
Figs. 8 and 9 and_d|scussed quant|tat|_vely in _F|gs. 15and 1 alues upon mixingL]. Furthermore, the theory of R&R4]
The apove_ Qescn_bgd se(_:ond an_d third mixing (_affects haVﬁredic’[s a much larger increase of the critical packing frac-
been identified originally in experiments on colloids.

tion ¢° upon mixing than measurdd]. Indeed, it predicts
The fourth general effect concerns the scale for the Iong'Ehat the glass transition can disappear completely if the size

time relaxation, i.e., the scale for hydrodynamic phenomen%tio 6 is smaller than a critical value. This result seems

such as d'ﬁ?fr'lonl’. ora r[]rore generqlly, forftlaerglaxatlohr}b.t implausible, since there is no obvious mechanism that pre-
processes ot the fiquid. TWo Scenarios are found as exnib e\Sients the large particles from becoming a glass upon increas-
by the liquid-glass transition diagram, by Fig. 1, or by Fig

11. For small size disparity, mixing stabilizes the glass statel.ng the density

As described above for the initial part of the structural relax-
ation, also the final part of the decay is slowed down upon
mixing. This is shown in Fig. 8 for the size rati®=0.8. ACKNOWLEDGMENTS
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