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Effect of composition changes on the structural relaxation of a binary mixture

W. Götze and Th. Voigtmann
Physik-Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 18 September 2002; published 19 February 2003!

Within the mode-coupling theory for idealized glass transitions, we study the evolution of structural relax-
ation in binary mixtures of hard spheres with size ratiosd of the two components varying between 0.5 and 1.0.
We find two scenarios for the glassy dynamics. For small size disparity, the mixing yields a slight extension of
the glass regime. For larger size disparity, a plasticization effect is obtained, leading to stabilization of the
liquid due to mixing. For alld, a decrease of the elastic moduli at the transition due to mixing is predicted. A
stiffening of the glass structure is found as is reflected by the increase of the Debye-Waller factors at the
transition points. The critical amplitudes for density fluctuations at small and intermediate wave vectors
decrease upon mixing, and thus the universal formulas for the relaxation near the plateau values describe a
slowing down of the dynamics upon mixing for the first step of the two-step relaxation scenario. The results
explain the qualitative features of mixing effects reported by Williams and van Megen@Phys. Rev. E64,
041502~2001!# for dynamical light-scattering measurements on binary mixtures of hard-sphere-like colloids
with size ratiod50.6.
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I. INTRODUCTION

The study of glass-transition phenomena in dense co
dal suspensions has received much attention during the
years. Such systems are well suited for a test of theo
since the particles’ properties can be tuned within a br
range. In particular, one can produce mixtures with partic
of different sizes and observe effects of changing comp
tion or size ratio. Recent experimental work of Williams a
van Megen@1# has shown that even in the simplest of su
systems, namely binary hard-sphere mixtures~HSM!, inter-
esting mixing phenomena appear for the dynamics clos
the glass transition. Three effects have been reported g
over from a one-component to a binary system containing
to 20% by volume of smaller spheres:~i! a shift of the glass
transition to higher packing fractions,~ii ! an increase in the
plateau values of the correlation functions at intermed
times, connected to an increase in the glass-form factors,
~iii ! a slowing down of the initial part of the relaxation to
wards this plateau.

In this paper, mixing effects in binary HSM are inves
gated in the framework of the mode-coupling theory of t
idealized glass transition~MCT!. The study of glass-
transition phenomena in colloidal suspensions that are g
realizations of one-component hard-sphere systems ha
vealed that MCT describes much of the experimental fact
these cases@2,3#. MCT makes general predictions for a
glass-forming systems, independent of their underlying
croscopic properties, be they one-component or multicom
nent systems. Thus, a universal glass-transition scenario
been established, involving scaling laws and power-l
variations of time scales. These properties have been fo
in many, not only colloidal, systems, as reviewed in Re
@4,5#. But MCT is also able to derive detailed results depe
ing on the specific interactions of a system. The aforem
tioned hard-sphere colloids are a paradigmatic example
which, among other things, the wave-vector dependenc
the Debye-Waller factors in the glass state has been ev
1063-651X/2003/67~2!/021502~14!/$20.00 67 0215
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ated and compared with results from scattering experime
@3#. The quantitative study of model systems allows one
predict general, while nonuniversal, trends that arise in c
tain classes of glass formers. Such a project has been ca
out for molecular liquids, where the known differences
reorientational relaxation for angular momentum,51 and 2
could be explained@6,7#. The work presented here in a sim
lar way aims to explain the general trends occurring in
mixture when changing its composition or the size dispa
of its constituents. Our discussion, motivated by the ci
light-scattering experiments@1#, focuses on binary HSM
with not too large size disparity in the species, close to
glass-transition density.

For a derivation of the MCT for mixtures, the reader
referred to Ref.@8#. The theory has already been applied
analyze computer-simulation data for a binary soft-sph
mixture @9#, a binary Lennard-Jones mixture@10,11#, a
molecular-dynamics model of a silica melt@12#, and a two-
component metallic melt@13#. Also, properties of binary
HSM in the limit of large size disparity@14–18# and of
charged hard spheres, particularly in their low-density reg
@19–21#, have been studied in the framework of MCT. Mix
ing effects in a binary HSM have been addressed rece
using a standard liquid-state mode-coupling approximati
albeit for states of such low density that glassy dynam
does not occur@22,23#. MCT equations for mixtures have
been derived recently within a nonlinear hydrodynam
theory@24#. The found equations are very different from th
ones analyzed here, and a connection of their implicati
with the light-scattering data@1# was not discussed.

The paper is organized as follows. In Sec. II, we summ
rize the basic formulas specifying the model under stu
Sections III and IV discuss our results for the fluid-gla
transition diagram and the glass-form factors, respectiv
We demonstrate in Sec. V that these lead to two qualitativ
different scenarios for the dynamics close to the glass tr
sition. Section VI summarizes the results.
©2003 The American Physical Society02-1
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II. DEFINITION OF THE MODEL

A. General equations of motion

A classical S-component fluid ofN spherical particles
shall be considered. The fluctuations of the partial num
densities shall be denoted as%a(qW )5(kexp@iqW•rWk

(a)#/AN, a
51,2, . . . ,S, where the sum runs over allNa particle posi-
tions rWk

(a) belonging to the speciesa. From this, the partial
density correlators are constructed, written asFab(q,t)
5^%a(qW )u%b(qW ,t)&. Here, ^AuB&5^dA* dB& with dA5A
2^A& denotes a scalar product in the space of dynam
variables. Angle brackets indicate canonical averaging
temperatureT. The time evolution is generated by a Liouvi
lian L: %a(qW ,t)5exp@iLt#%a(qW ). Since the%a are spatial
Fourier transforms of a real density variable in an isotrop
translational invariant system,Fab(q,t) is real, even int,
and it depends on the wave vector only throughq5uqW u. An
evaluation of the density correlatorsFab(q,t) is the major
aim of this paper.

The starting point of the theory is the exact reformulati
of the equations of motion using the Zwanzig-Mori tec
nique. Considering the limit of a system of colloidal particl
undergoing Brownian dynamics, this equation reads

t~q!Ḟ~q,t !1S~q!21F~q,t !

1E
0

t

M~q,t2t8!Ḟ~q,t8!dt850. ~1a!

It is to be understood as a matrix equation as is indicated
the bold symbols.S(q) is the matrix of partial structure fac
tors defined bySab(q)5^%a(qW )u%b(qW )&. The short-time be-
havior of the correlators is given byF(q,t)5S(q)
2t(q)21utu1O(t2), where t(q) is a symmetric positive
definite matrix of relaxation times. It shall be specifie
in terms of short-time diffusion coefficientsDa

0 as
tab(q)51/(q2Da

0)dab . The memory kernelM(q,t) is given
by the so-called fluctuating forces,Mab(q,t)5(kBT)2(xa /
ma)(xb /mb)^QLj a(qW )uR8(t)QLj b(qW )&. Here, Q is the
projector perpendicular to the number densities,%a(qW ), and
the longitudinal parts of the number current densit
q ja(qW )5L%a(qW ). R8(t)5exp@iQLQt# is the reduced evo
lution operator. Thema are the masses of the species labe
by a andxa5Na /N are the number concentrations.

Equation ~1a! is complemented by an approximate e
pression for the memory kernel. The MCT approximation
this quantity follows from a straightforward generalization
the one-component case@8# and gives the polar form

M~q,t !5F @F~ t !,F~ t !#~q! ~1b!

of a symmetric bilinear form of the density correlators

Fab@F(1),F(2)#~q!5
1

2q2

%

xaxb
(

a8b8a9b9
(

kW
Vaa8a9~qW ,kW ,pW !

3Fa8b8
(1)

~k!Fa9b9
(2)

~p!Vbb8b9~qW ,kW ,pW !.

~1c!
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Here, r is the total number density,pW 5qW 2kW , and
Vabg(qW ,kW ,pW ) are vertices quantifying the coupling of a forc
fluctuation of wave vectorqW to density-fluctuation pairs with
wave vectorskW andpW , respectively. The vertices are given b
the equilibrium structure of the system in terms of t
Ornstein-Zernike direct correlation functioncab(q) and
static three-particle correlations. The latter shall be expres
in terms of theSab(q) using the convolution approximation
One thus arrives at

Vaa8a9~qW ,kW ,pW !5~qW kW /q!caa8~k!daa91~qW pW /q!caa9~p!daa8 .

~1d!

A few remarks to these equations might be in order. T
solution to Eqs.~1! exists for all t>0, and it is uniquely
determined by the initial conditions. For a system with c
loidal short-time dynamics, the correlation functionsF(q,t)
are completely monotonic functions@25#. This property is
preserved by the specified MCT approximation. In detail
implies the following. The matricesF(q,t) are positive defi-
nite, written asF(q,t)f0, for all timest and at allq; and for
the time derivatives, there holds (21)l] t

lF(q,t)f0 for all
l 51,2, . . . . Furthermore, the solution depends smoothly
Sab(q), tab(q), andVabg(qW ,kW ,pW ) for any fixed finite time
interval. At t→`, the bifurcations in the long-time limit
F(q)5 limt→`F(q,t) may occur at critical points called
glass-transition singularities. TheFab(q) are called the glass
form factors and they are solutions of the equation

F~q!5S~q!2$S~q!211F @F,F#~q!%21. ~2a!

In particular, the correctF(q) can be determined through a
iteration scheme, F(n)(q)5S(q)2$S(q)21

1F @F(n21),F(n21)#(q)%21, n51,2, . . . , with starting
point F(0)(q)5S(q). The sequenceF(n)(q) converges
monotonically towardsF(q). For sufficiently small vertices
one has the liquid solutionF(q)50, while the glass is char-
acterized byF(q)Þ0. Solutions corresponding to critica
points shall be denoted by a superscriptc. To understand the
bifurcation scenario, one needs to discuss the critical eig
vector of the linearization of Eq.~2a!, H(q), given by

H~q!22@Sc~q!2Fc~q!#F c@Fc,H#~q!@Sc~q!2Fc~q!#50.
~2b!

This eigenvector is nondegenerate, which implies that
MCT bifurcations belong to the typeA, , ,52,3, . . . , intro-
duced by Arnol’d@26#. Also, one can chooseH(q)s0. All
of the preceding remarks apply to the general case of ma
valued MCT equations; they are not affected by the prec
form of the vertices entering Eq.~1c!. Proofs of the cited
mathematical properties of Eqs.~1! and ~2! can be found in
Ref. @27#. In this paper only the simplest bifurcations, i.e
those of typeA2 are discussed, where a jump occurs inF(q)
from 0 to the critical valueFc(q)s0.

There is an important implication of the cited general
sults that can be substantiated in complete analogy to the
2-2



-
th

-

-
ib
o

tio
th

nd
e
ur

re
-

t

s
g

a

ng-

ere

e

am-

f

e

ion,
ing
rge
uld

the
his
sid-

e

rd-
ne-
le,

the
p-
n-

tor

c-

lso
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obtained for one-component systems@28,29#. There exists a
time scalet0 such that one can express the solution of Eq.~1!
for t@t0 in the form

F~q,t !5S1/2~q!f~q, t̃ !S1/2~q!, ~3a!

where t̃ 5t/t0. The time scalet0 depends smoothly on
Sab(q), tab(q), and Vabg(qW ,kW ,pW ). The sensitive depen
dence ofF on the control parameters is described by
completely monotonic functionf(q, t̃ ). The latter is deter-
mined, up to some arbitrary time scalet* , through the equa-
tion

f~q,t !5m~q,t !2
d

dtE0

t

m~q,t2t8!f~q,t8!dt8, ~3b!

obeying the initial condition

lim
t→0

~ t/t* !1/3f~q,t !51. ~3c!

Here the kernelm(q,t) is given by the mode-coupling func
tional @Eq. ~1c!# as

m~q,t !5S1/2~q!3F@S1/2f~ t !S1/2,S1/2f~ t !S1/2#~q!S1/2~q!.
~3d!

This means thatf(q, t̃ ) is determined by the quantities en
tering F only, i.e., by the parameters specifying the equil
rium structure. In this manner, MCT justifies the concept
structural relaxation as opposed to, e.g., transient relaxa
The latter, be it Brownian or Newtonian, merely enters
scalet0. In particular, this implies that details oftab(q) do
not affect the structural relaxation apart from influencingt0.

Let us also note the formulas for the longitudinal a
transversal elastic moduli of the mixture. They are giv
through Green-Kubo relations involving the total mass c
rents @30,31#. One defines the projectorQHD as projecting
out %a(qW ) and the longitudinal mass current,J(qW )
5(ama j a(qW ) together with the corresponding reduced
solventRHD8 (z). The latter is the Laplace transform for fre
quency z of the corresponding evolution operatorRHD8 (t)
5exp@iQHDLQHDt#. For the longitudinal viscosity, this
yields @30#

hL5 lim
z→0

lim
q→0

%

kBT

1

q2
^QHDLJ~qW !uRHD8 ~z!QHDLJ~qW !&.

~4!

At the bifurcation singularity, a nontrivial long-time limi
Fc(q) implies a pole at zero frequency,Fc(q,z);
2Fc(q)/z. According to this, the longitudinal modulu
shows a discontinuitydML

c at the glass transition. Rewritin
Eq. ~4! in terms of the MCT projectorQ, one gets

dML
c5~%kBT! lim

q→0
(
ab

xaF ab
c @Fc,Fc#~q!xb . ~5!
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The glass, different from the liquid, is characterized by
finite shear modulus. A formula similar to Eq.~5! is obtained
for the shear modulusMT

c at the glass transition,

MT
c5~%kBT! lim

q→0
(
ab

xaF ab
T,c@Fc,Fc#~q!xb . ~6!

Here, the MCT expression for the transverse fluctuati
force kernelF T(q) is obtained fromF(q) by replacing in
Eq. ~1c! the vertices by

V aa8a9
T

~qW ,kW ,pW !5~qW TkW /q!caa8~k!daa9

1~qW TpW /q!caa9~p!daa8 . ~7!

In this formula,qW T is a vector of lengthq perpendicular toqW .

B. The binary hard-sphere mixture

The general theory shall be applied to binary hard-sph
mixtures~HSM!, consisting of large~A! and small~B! par-
ticles. If da , a5A,B denote the particle diameters, th
packing fractions of the species readwa5(p/6)(xa%)da

3 ,
and the total packing fraction is given byw5wA1wB . The
thermodynamic state is characterized by three control par
eters. Let us choose them to be the total packing fractionw,
the size ratiod5dB /dA<1, and the packing contribution o
the smaller speciesx̂B5wB /w. Whenever composition
changes are considered in the following, a variation ofx̂B for
fixed w and d is to be understood. This in turn implies th
number concentration of the small particles to vary as

xB5
x̂B /d3

11 x̂B~1/d321!
. ~8!

The procedure is somewhat in between a true addit
which would increase both total density and total pack
fraction, and a replacement of a certain amount of la
spheres by the same amount of smaller ones, which wo
reduce the total packing fraction. For sufficiently smalld,
there appears a percolation threshold for the motion of
small particles in the glass formed by the large ones. T
transition and its precursor phenomena shall not be con
ered in this paper.

Static structure input for our model is taken from th
Percus-Yevick~PY! approximation@32,33#. More accurate
solutions of the Ornstein-Zernike integral equations for ha
sphere mixtures are available. Yet, one knows from the o
component MCT that improvements aiming at, for examp
thermodynamic consistency have little influence on
glassy dynamics. Unfortunately, the quality of the PY a
proximation at the desired high packing fractions is u
known. It is known that large errors of the structure fac
can occur if one goes over to large values of 1/d @34#, but
this case is excluded from our discussion.

With the structure factor and the direct correlation fun
tions given, the vertices in Eqs.~1d! and~7! are well-defined
functions of the wave vectors and matrix indices. Hence, a
2-3
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the mode-coupling functionalF in Eq. ~1c! is defined as a

triple integral over the components ofkW ; and the same hold
for the functionalF T. After introduction of bipolar coordi-

nates and using rotational symmetry, thekW integrals are

transformed to double integrals overk5ukW u and p5uqW 2kW u.
After performing theqW→0 limit in the functionals, the zero
wave-vector limits entering Eqs.~5! and ~6! are reduced to
one-dimensional integrals overk. As a next step, the wav
vectors are reduced to points on a grid ofM values. The grid

is chosen asqdA5q01q̂Dq, with q050.2, Dq50.4, and

q̂50,1, . . . ,M21, unless otherwise stated. The integrals
replaced by Riemann sums. The resulting formulas are
same as explained explicitly before for the one-compon
systems@35#, but additional sums over matrix indices occu
As a result, the cited equations refer to ones for sets oM
matrix correlators, whereq serves as a label for the correl
tors. To complete the specification of the equations,
short-time diffusion constants are taken according to
Stokes’ law,Da

05C/da . The unit of time is chosen so tha
C50.01.

For the simple hard-sphere system, it was found tha
choice ofM5100 is sufficient to avoid cutoff and discret
zation effects for the results@35#. Our work was done mostly
with M5200, implying a cutoff wave vectorq* dA579.8.
This enables us to handle size ratios ofd>0.5 with the ac-
curacy used earlier for the simple system. Thus, Eqs.~1a!–
~1c! are 600 coupled integro-differential equations for 6
correlators, and Eq.~2a! formulate 600 implicit equations fo
the 600-glass form factors. The latter equations are solve
the iteration mentioned above. Thereby, one gets the f
factors as discussed in Sec. IV. Shifting the value for
packing fractionw, one identifies the glass-transition poin
The linear equation for the nondegenerate eigenvectorH(q),
@Eq. ~2b!#, is solved by a standard routine. This eigenvec
is used to calculate the asymptotic solutions discusse
Sec. V B. The critical glass form factors are substituted i
Eqs.~5! and ~6! so that the contributions to the moduli di
cussed in Sec. III can be calculated.

The closed set of Eqs.~1a!–~1c! as well as Eqs.~3a!–~3d!
for the time dependence of the correlators are solved b
method adapted to this special kind of Volterra problem. T
solutions of Eqs.~1! yield the correlators to be compare
with the cited light-scattering data. The solutions of Eq.~3b!
are used in Sec. V B to separate structural relaxation fr
the transient dynamics. To proceed, one introduces a grid
the time axis of equal step sizeh consisting ofN points. The
time derivatives in Eqs.~1a! and~3b! are replaced by differ-
ence relations and the convolution integrals by Riema
sums. One gets a recursion relation determining the solut
for time tn115h(n11) from the valuest l , l<n. The initial
values are taken from the short-time asymptote, given
F(q,t)2S(q);2t(q)21t or Eq.~3c!, respectively. Becaus
of the scale invariance of the equations of structural rel
ation, the value oft* does not matter. One has to make su
that the results obtained for 0,t,tN remain stable within
the desired accuracy upon doublingh or halvingN. Then one
carries out a decimation by settingh°2h. Thereby, one
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solves the equations up to 2tN . This procedure is repeate
until the correlators reach their long-time asymptote. Deta
are explained, e.g., in Ref.@36#. Typically, the figures in this
paper have been calculated withh51026 and N5256. Let
us point out that Eqs.~1!–~7! are completely analogous t
the ones discussed repeatedly in the previous studies of
component systems. Also the numerical methods applied
the solution are the ones used earlier for the simple case.
additional complication here is the handling of matrices; b
this is straightforward though numerically more demandin

III. TRANSITION DIAGRAM

Cuts through the liquid-glass transition surface in t
three-dimensional control-parameter space for the bin
HSM are depicted in Fig. 1. To assure that the results do
seriously depend on the discretization used, we show as
the glass-transition points calculated ford50.6 and 0.8 from
the model withM5600, Dq50.4/3, q050.2/3. In addition,
for d50.6 the dotted line exhibits the result calculated w
cutoff q* dA539.8 andM5100, which are the discretizatio
parameters used in Ref.@35#. One infers that forx̂B&0.3,
this discretization would be sufficient to produce reasona
results.

For fixed size ratiod&0.65, the critical packing fraction
first increases upon increasingx̂B . Since x̂B50 and x̂B51
both represent monodisperse hard-sphere systems, one
wc( x̂B50)5wc( x̂B51). Thus, the liquid-glass transitio

FIG. 1. Liquid-glass transition diagram of a binary hard-sph
mixture ~HSM! for size ratios d50.5 ~triangles!, d50.6 ~dia-
monds!, d50.7 ~squares!, and d50.8 ~circles!, plotted as critical
total packing fractionwc versus packing contribution of the smalle

species,x̂B5wB /w. Full lines are guides to the eyes. The dash
lines indicate results obtained from tripling the numberM of grid
points from M5200 to M5600, and the dotted line ford50.6
shows results obtained usingM5100; see text for details.
2-4
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lines for d&0.65 exhibit a maximum at some intermedia
values ofx̂B . It is well understood that big particles movin
in a liquid of much smaller ones experience an effect
attraction@37# that is of purely entropic origin. Such a shor
ranged attraction leads to a stabilization of the liquid pha
as was explained earlier@38–40#. Our result is a direct anal
ogon of this depletion-attraction effect. Similarly, from th
discussion of polymer melts it is known that the introducti
of smaller components into the system typically decrea
the viscosity, i.e., drives the system further into the liqu
phase; an effect sometimes called ‘‘plasticizing.’’ Therefo
the effect found here is an entropically induced plasticizat
effect.

For less-disparate-sized mixtures, the theory predicts
inversion of the effect described above. An example is sho
in Fig. 1 for d50.8, where a decrease ofwc with increasing
x̂B up to some minimum point is observed. This is in acc
dance with similar MCT results for a binary soft-sphere m
ture @9#. It means that the introduction of disorder due to
small polydispersity of the particles stabilizes the glass st
The transition diagram is not symmetric with respect
x̂B→(12 x̂B); our theory predicts for 0.65&d&0.8
‘‘ S’’-shaped transition lines.

To get another view on the transition diagram, let us
fine the relative change ofwc with respect to the one
component case as

Dwc~d!5@wc~d,xB
6!2w0

c#/w0
c . ~9!

Here,xB
6 are the points at which a maximum or a minimu

occurs inwc(xB) for fixed d; w0
c'0.5159 is the critical pack-

ing fraction of the one-component system. The resulting v
ues are plotted in Fig. 2 together with the data taken fr
Ref. @41#. There results forDw(d) of several experiments fo
random loose sphere packings in two-component steel-

FIG. 2. Maximum relative increase and decrease of the crit
packing fractionDwc(d), according to Eq.~9!, as a function of the
size ratiod ~crosses!, together with experimental data for rando
loose packing~triangles, reproduced from Ref.@41#, cf. text!. For
the MCT critical packing fraction values, two symbols are noted
thosed where a maximum and a minimum different from thed
51 value could be identified.
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mixtures have been presented. These are operationally
fined as the random packing fractions obtained when pou
spheres into a container without subsequent densifica
through shaking. One observes that bothDwc(d) and the
data follow the same trend. Note that we get negative val
for 0.65&d,1. In Ref.@41#, no such effect is discussed, b
it is reported that there seems to be no observable chang
the data. There is no precise theoretical definition of the c
cept of random loose packing. Nevertheless, the repo
values can be taken as a quantization of a mixing effect,
of modifications of the random cage structure. The fact t
the variation inDwc with d agrees with these experiment
findings supports the conclusion that MCT is able to capt
the change in the average cage structure induced by the
ence of the second component.

The results from above suggest that the change of
glass-transition point with composition can be understood
looking at the geometrical structure of the system. This
formation is reflected by the static structure factors that co
prise the relevant input for the MCT vertex in Eq.~1d!. In
particular, it is understood that theq-vector region around the
first sharp peak inS(q) is important for explaining the MCT
glass transition. Figure 3 shows this region for the total str
ture factor S(q)5(abSab(q) at fixed packing fractionw
50.515, compositionx̂B50.2, and differentd. One notices
two trends caused by decreasingd, viz., a decrease in pea
height and an increase in its large-q wing. The interplay
between these two trends is responsible for the shift inwc. At
largerd, the increase in the wing is dominant and stabiliz
the glass, i.e., it reduceswc with respect to the one
component system. But atd&0.65, the reduction in peak
height, equivalent to a weakening of the intermediate-ra
order, overwhelms this trend. This effect stabilizes the liqu
i.e., increaseswc. In all cases, the peak position shifts
higherq, indicating that, on and average, particles are clo
together in the mixture than in the one-component system
effect typical for the introduction of effective attractive inte
actions@40#.

Another way of looking at the local structure of the HS

l

r

FIG. 3. Total structure factorS(q)5(abSab(q), calculated in
the Percus-Yevick approximation for binary mixtures withw

50.515, x̂B50.2 and three values ofd.
2-5
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is provided by the partial pair distribution functionsgab(r ).
These have been obtained by numerically solving
Ornstein-Zernike equation in ther domain using Baxter’s
factor function for the PY closure. The results are shown
Fig. 4 for gAA(r ) and gAB(r ), again at fixedw and x̂B for
variousd. Here, both quantities vary more or less in pha
for d*0.7, indicating that the local ordering of the on
component system is only slightly disturbed. One infers
B particles to be responsible for smaller average particle
tances, thus favoring arrest of the structure. For smalled,
the one-component system’s structure is modified more
verely, sincegAA(r ) and gAB(r ) no longer vary in phase
Instead, ‘‘chemical ordering’’ effects can be seen, and th
are responsible for the shift of the glass transition to hig
packing fractions.

Let us stress that the variation ofwc with concentration,
while being small in total, nevertheless has a large impac
the dynamics close to the glass transition. This holds si
relaxation times of the liquid in this region depend strong
on the distance to the critical packing fraction. We shall re
to this point in Sec. V A.

IV. GLASS FORM FACTORS

The spontaneous arrest of density fluctuations within
glass state is quantified by the glass form factorsFab(q). In
principle, these quantities can be measured in a scatte
experiment via the intensity of the elastic line in the cro
section. The diagonal elementsf̂ aa(q) of the normalized
quantities,

f̂ ab~q!5Fab~q!/ASaa~q!Sbb~q!, ~10!

have the meaning of the Debye-Waller factor for the dis
bution of speciesa. In the limit x̂B→0, f̂ BB(q) is the spatial
Fourier transform of the density distribution of a single l

FIG. 4. Results within the Percus-Yevick approximation for t
partial pair correlation functionsgAA(r ) andgAB(r ) of binary HSM

at w50.516; x̂B50.2; andd50.9 ~solid lines!, d50.8 ~dot-dashed
lines!, and d50.6 ~dashed lines!. Curves forgAA(r ) have been
shifted up by 1.0 for clarity.
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calizedB particle. It is the Lamb-Mo¨ßbauer factorf B
s (q) of a

B particle in the hard-sphere system ofA particles. A similar
statement holds with the role ofA and B particles inter-

changed, i.e.,f A
s (q)5 f̂ AA(q,x̂B→1), but then the tagged

particle is of the size 1/d in units of the diameter of the
surrounding hard spheres’. If the packing fractionw de-
creases towards the transition valuewc, the f̂ aa(q) decrease
towards their critical values,f̂ aa

c (q). These values are o
particular relevance since they specify the so-called plat
values of the correlation functions of the liquid for stat
near the liquid-glass transition@42#. This will be discussed
further in Sec. V.

Figure 5 shows the critical Debye-Waller factors for sm
size disparity,d50.8, and variousx̂B . One notices an in-
crease of the values with increasingx̂B for almost allq. This
result can be understood as follows. With no second spe
present,f̂ AA

c (q) matches the Debye-Waller factor of the on
component system,f c(q), shown by the full line in the uppe

FIG. 5. Critical glass form factorsf̂ aa
c (q)5Faa

c (q)/Saa(q) of a
binary HSM with size ratiod50.8 for the large~upper panel! and
small ~lower panel! particles. The packing contributions of th

small spheres arex̂B50 ~solid lines!, 0.05~plus symbols!, 0.2 ~dia-
monds!, 0.6 ~circles!, and 1.0~dashed lines!. In the upper panel,

results for smallq at x̂B50.01 ~crosses! and 0.1~squares! are also
shown. The dash-dotted line in the upper panel demonstrates

linear interpolation between the casesx̂B50 and x̂B51 for qdA

*6.
2-6
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panel. On the other hand, as mentioned above, forx̂B→1,

the quantityf̂ AA
c (q) crosses over to the tagged-particle qua

tity of a bigger sphere in a surrounding fluid of smaller on

f A
s,c(q). At q→0 and x̂B50, momentum conservation im

plies f̂ AA
c (q→0),1; while for x̂B→1, particle conservation

and momentum relaxation for the tagged particle requ
f A

s,c(q→0)51 @42#. By interpolation, one gets an increase

f̂ AA
c (q) with increasingx̂B at small q. For largeq, on the

other hand, the Debye-Waller factor in a one-component s
tem is oscillating around the Lamb-Mo¨ßbauer factor of a
tagged particle with equal diameter. The Lamb-Mo¨ßbauer
factor in turn can be approximated reasonably by a Gaus
f s(q)5exp@2(qrs)

2#, where r s is the particle’s localization
length@43#. The smaller the localization length becomes,
bigger the radiusds of the tagged particle is with respect
the radiusd of the surrounding spheres@43#; in particular,
one gets for a tagged particle of diameterds/d51/0.6 ~1/0.8,
0.8, 0.6! the valuer s

c/d50.041 ~0.056, 0.095, 0.136!. This

implies the distribution of thef̂ AA
c (q), given in the limit

x̂B→1 by f s,c(q) with ds/d5d, to be broader than that in
the limit x̂B→0, given by f c(q).Therefore the width of the
distribution f̂ AA

c (q) has to increase ford,1 asx̂B increases
from zero to unity. This is demonstrated in the upp
panel by the dash-dotted line. It represents a simple in
polation, f̂ AA

c (q)' f c(q)1@ f A
s,c(q)2 f c(q)# x̂B for x̂B50.6

andq.6/dA .
The change off̂ BB

c (q) can be understood along the sam
line of reasoning. But one has to notice that in this case
localization length of a smaller sphere in a surrounding
big ones matters. In particular, one hasf̂ BB

c (q,x̂B→0)
5 f B

s,c(q/d). This yields a width of this distribution smalle

than the one of thef̂ BB
c (q,x̂B→1)5 f c(q/d). Such an effect

can be seen in the lower panel of Fig. 5 forqdA*7. The
crossover is naturally given by the size of theA particles.
Based on the above argument, one expects at smallerq the
inverse trend. But this is only found inf̂ BB

c (q) for 5&qdA

&7. Instead one notices that for allx̂B<0.6, the f̂ BB
c (q)

follow closely the result forx̂B50, i.e., they are still close to
unity at smallq. This is a consequence of the normalizati
chosen here, since it is dominated by a change inSBB(q) at
smallq. It could be eliminated when discussing, e.g., matr
normalized quantities,f(q)5S21/2(q)F(q)S21/2(q), where
the normalization properly accounts for the overall change
S(q).

The above argument only depends on the fact thatd,1,
but not on the precise ratio of localization lengths. Thus i
quite general in binary HSM. Figure 6 shows the scenario
d50.6, i.e., for a larger size disparity, and indeed one r
ognizes the same trends as above. Here, the deviation
f̂ BB

c (q) from the tagged particle’sf B
s,c(q) set in faster with

increasingx̂B than it was the case ford50.8. But one has to
keep in mind that for smallerd, the changes inx̂B induce
larger changes in the number concentrationxB , @cf. Eq. ~8!#.
The description off̂ AA

c (q) as a simple interpolation betwee
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f A
s,c(q) and f c(q) as explained above is notably worse, ind

cating that this simple picture quantitatively only works ford
not too different from unity. Also more pronounced in th
case are the changes inf̂ BB

c (q) for smallq, going back to the
same reason as outlined above. Let us note in addition
for bothd, the trend noticed for the diagonal elements is a
found for f̃ AB(q)5FAB(q)/SAB(q), provided one is suffi-
ciently far away from thoseq where a divergence due t
vanishingSAB(q) occurs.

Macroscopic mechanic stability of the system is char
terized by the elastic moduli. The liquid exhibits a longit
dinal elastic modulus given by the structure factor throu
ML

05%(kBT)(abxaSab
21(q→0)xb @44#. In the glass, the lon-

gitudinal modulusML is larger,ML5ML
01dML , due to the

arrest of the structure,@Eq. ~5!#. Figure 7 shows the result
for the binary HSM at the transition points ford50.6, 0.7,
and 0.8 and also the critical shear modulus,@Eq. ~6!#. All
quantities are shown in units of (%kBT) in order to more
clearly reveal the effect of composition change. Note that
total density% of the system increases and superimpose
rise in the moduli one could call an ‘‘ideal mixing’’ contri
bution. This ideal mixing value is given by the one
component values,dML

c'56.9 and MT
c'18.3, shown

through dashed lines in Fig. 7. At intermediatex̂B , strong
deviations from ideal mixing occur. For alld investigated
here, the moduli decrease below their one-component val
indicating that the system becomes softer upon addition

FIG. 6. Same as Fig. 5, but for size ratiod50.6.
2-7
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smaller spheres. The effect increases with decreasingd and it
is of the order of 40% ford50.6. It is partly connected with
a corresponding increase in compressibilityk51/ML

0 . In-
deed, one observes for the givend, minima in all three quan-
tities at roughly the samex̂B . Let us nevertheless point ou
that apart from this thermodynamic contribution to the so
ening of the glass, mode-coupling effects still are necess
to explain the moduli ford50.6. This can be inferred from
the crossing of theMT

c-versusx̂B anddML
c-versus-x̂B curves

that is absent inML
0 .

V. DYNAMICS

Close to an ideal glass transition, the essential aspec
the dynamics are described by a universal scenario. This
nario has been discussed comprehensively for o
component systems@35#. The results of Ref.@27# assure that
these universal results are shared by the dynamics of
HSM. In particular, a two-step decay process arises, w

FIG. 7. Isothermal longitudinal elastic modulusML
0 , increase of

the longitudinal elastic modulus at the transition pointsdML
c , and

transversal elastic modulusMT
c at the liquid-glass transition point

in units of%kBT as functions of the packing contributionx̂B of the
smaller particles for size ratiosd50.8 ~circles!, 0.7 ~squares!, and
0.6 ~diamonds!. The dashed lines indicate the corresponding id
mixing values evaluated for the one-component system.
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plateau values given by the critical glass form facto
f̂ ab

c (q), and power-law relaxations towards and from the p
teau, governed by anomalous exponents. If the total pac
fraction is increased towards the critical valuewc with other
parameters kept fixed, a drastic increase in the relaxa
time ta of the slowest decay process is obtained that is ty
cal for glass-forming liquids.

In this section, we shall focus on the general, but nonu
versal features of the glassy relaxation in the binary HSM.
demonstrate the changes induced by different compositi
let us investigate a horizontal intersection of the transit
diagram of Fig. 1 and consider a change of the composi
x̂B for the total packing fraction fixed atw50.515, i.e., at a
value slightly below the glass transition of the on
component hard-sphere system. As above, the two diffe
general scenarios, large and small size disparity, shal
demonstrated using the valuesd50.6 andd50.8, respec-
tively.

A. General features

The dynamics forx̂B<0.2 is demonstrated by Figs. 8 an
9 for the AA and BB correlation functions. We chose th
wave vectorq55.4/dA below the peak inf̂ AA

c (q); it corre-
sponds roughly to the one used in the light-scattering exp
ment of Ref. @1#. The normalized correlatorsf̂aa(q,t)
5faa(q,t)/Saa(q) cross their plateau valuesf̂ aa

c (q) at cer-

tain times, sayta(q), f̂aa„q,ta(q)…5 f̂ aa
c (q), which are

marked by filled diamonds in the figures. Close to the tra
sition, the correlators are close to this plateau for a large t
interval. This is a manifestation of the cage effect. In
leading-order approximation forwc2w tending to zero, the
time scaleta(q) neither depends ona nor on q @42#. The
independence ofa is demonstrated to a good approximatio
in the figures. As explained in connection with Figs. 5 and
the plateau increases with increasingx̂B and the increase is
more pronounced for the larger majority particlesA than for
the smaller minority particlesB.

The decay of the correlators below the plateau is refer
to as thea process. A characteristic time scaleta(q) for this
process shall be defined by specifying 90% of the dec
f̂aa(q,ta(q))50.1 f̂ aa

c (q). These times are marked by ope
diamonds in the figures. Ford50.8, Fig. 8 demonstrates tha
thea-relaxation scale increases with increasingx̂B . This re-
flects the fact that with increasingx̂B the state corresponds t
a smaller distance from the transition point~compare Fig. 1!.

The scenario ford50.6, exhibited in Fig. 9, appears mor
subtle. In this case, the glass-transition diagram implies
distance to the transition to increase with increasingx̂B , thus
leading to faster decay on thea time scale. But the effect o
increasing plateau values with increasingx̂B was seen above
to occur for alld. The combination of these effects leads
a crossing of correlators, as has also been observed in ex
ment @1#.

In a dynamical light-scattering experiment, one does
measure theFab(q,t) directly. Rather, one measures a su

l

2-8
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weighted with the scattering amplitudesba(q) @45#,

fm~q,t !5
1

Nq
(
ab

ba~q!bb~q!Fab~q,t !. ~11!

Here, Nq is some normalization constant chosen to sati
fm(q,t50)51. It was a crucial point in Ref.@1# to be able
to vary theba(q) without altering the dynamics. Thus, thre
independent measurements offm(q,t) could be used to in-
vert Eq. ~11! and therefore to determine the three distin
functionsFab(q,t). The latter are better suited for a com
parison with the theory. But let us also demonstrate the
namics for a typical example of the directly measured fu
tion fm(q,t). If one assumes the colloidal particles to
uniform spheres, one gets@45#

ba~q!}
da

3

~qda!3 S sin~qda/2!2
qda

2
cos~qda/2! D . ~12!

FIG. 8. Normalized partial density correlation function

f̂aa(q,t)5Faa(q,t)/Saa(q) for a5A, B of a binary HSM with
size ratiod50.8 and different packing contributions of the small

particlesx̂B for fixed packing fractionw50.515. The wave vector is
qdA55.4. The unit of time here and in the following figures
chosen so that the short-time diffusivity isDa

050.01/da . Filled
diamonds mark the intersection of the decay curves with the pla

value f̂ aa
c (q). The open diamonds marka-relaxation time scales

ta(q) defined byf̂aa(q,ta(q))/ f̂ aa
c (q)50.1.
02150
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Figure 10 shows the results ford50.6 andd50.8 at qdA
55.4. The same qualitative picture as discussed above
the f̂AA(q,t) correlator arises, yet the increase in plate
values is less pronounced. The reason is a destructive i
ference effect in Eq.~11! caused byFAB(q,t)<0. This
holds especially ford50.8, and also for smaller wave vec
tors. Nonetheless, some increase remains in all cases,
one should be able to see this in experiment. One could
tempted to analyze such data in terms of a one-compo
model. However, this would be misleading. For a one co
ponent system, the observed increase of the plateauf m,c(q)
5(abba(q)bb(q)Fab

c (q) would imply that the system be
comes stiffer upon increasing the contribution of smaller p
ticles. But we have seen above from a discussion of
mechanical moduli that the opposite is the case.

Figure 11 exhibitsa-relaxation scalestA for the larger
particles as a function of mixing. It corroborates the pictu
suggested by the glass-transition diagram. Since thea relax-
ation close to the glass transition varies asta;(wc2w)2g,
g.2.5, the variations oftA are much more pronounced tha
those ofwc. Note that the values oftA for differentd do not
necessarily coincide atx̂B51. MCT predicts alla-relaxation
timesta(q) to be coupled. Thus, the qualitative picture de
onstrated in Fig. 11 will also hold for thea-relaxation scales

au

FIG. 9. Normalized partial density correlation function

f̂aa(q,t) as in Fig. 8, but for the size ratiod50.6. The dashed lines
in the upper panel show the short-time approximation accordin

Eq. ~14! for x̂B50 and 0.2, from left to right.
2-9
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of other experimental quantities such as the viscosities
inverse diffusivities. Nucleation rates are also affected by
diffusivities; thus Fig. 11 demonstrates a possible reason
nucleation in binary mixtures to vary strongly with chang
of the composition.

B. Dynamics close to the plateau

One notices in Figs. 8 and 9 a trend for the relaxation ont
the plateau value. This part of the curve, which deals w
the onset of structural relaxation, displays a slowing down
the relaxation with increasingx̂B for both cases considere
for d. In principle, the relaxation in this time window is
result of both structural and transient relaxation. In a lead
approximation, the latter is given by

F~q,t !5exp@2q2D~q!t#S~q!, ~13!

with the matrixD(q) of short-time collective diffusion con
stants,D(q)5„q2t(q)…21S(q)21. In particular, for a binary
mixture this yields

FIG. 10. Sumfm(q,t) of the partial density correlation func
tionsFab(q,t) at wave vectorqdA55.4, weighted according to Eq
~11! with scattering amplitudesba(q) as specified in Eq.~12!. The

packing fraction is kept constant atw50.515, andx̂B50, 0.05, 0.1,
0.2 as indicated by the labels. The upper panel shows the resul
size ratiod50.6, the lower one ford50.8.
02150
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f̂AA~q,t !512q2D8~q!t1O~ t2!, ~14!

where D8(q)5x(q)D(q) with x(q)5S(q)/SAA(q), and
D(q) and S(q) are the diffusion constant and the structu
factor of the one-component system, respectively. It has
ready been noticed in Ref.@1# that x(q),1 for small q.
Thus, one expects a slowing down of the short-time diffus
due to mixing in the limit of smallq. For the wave vector
discussed here, however, the effect is small: withd50.6, w
50.515, andqdA55.4, one getsx'0.82 (0.76,0.78) for
x̂B50.05 (0.1, 0.2). The approximations resulting from E
~14! are shown forx̂B50 and 0.2 as dashed lines in Fig.
One infers that this describes the dynamics only
f̂AA(q,t)>0.98. Note thatx(q) is not monotonous inx̂B ,
but the mentioned increase in the stretching of the short-t
relaxation with increasingx̂B is. Furthermore, at still large
wave vectors, one hasx(q).1 asx(q→`)51/xA , yielding
faster short-time diffusion in the mixture. But the slowin
down of the relaxation towards the plateau persists also
largeq, as can be inferred from the numerical solutions. Th
we conclude that the change in the short-time diffusion
efficients is not sufficient to explain the observed effect.

Let us now focus on the structural relaxation as defined
Sec. II A. Figure 12 presents solutions of Eqs.~3! for d
50.6 and differentx̂B at fixedw, together with the solutions
reproduced from Fig. 9. The long-time parts of correspo
ing curves can be scaled on top of each other, since there
dynamics depends on the short-time behavior only throug
scaling timet0, as is demonstrated for thex̂B50.2 curve. For
other x̂B , the same observation is valid. Nevertheless,
have applied the same rescaling as used forx̂B50.2 instead
of matchingt0 andt* independently for differentx̂B . This is
done in order to also demonstrate the drift of the scaling ti
t0( x̂B) with x̂B . At short times, all structural relaxatio

for

FIG. 11. a time scale tA defined through f̂AA(q,tA)

50.1 f̂ AA
c (q) for qdA55.4 at packing fractionw50.515, andd

50.8 ~circles!, 0.7 ~squares!, and 0.6~diamonds!. The lines are
guides to the eye.
2-10
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curves follow the same asymptotet21/3, and one notices tha
they deviate from one another at roughlyt510t* . This
demonstrates that the increase of the stretching in the in
decay with increasingx̂B , exhibited for 2.5& log10(t/t* )
&5.5, is a result of structural relaxation rather than trans
dynamics.

In order to achieve a deeper understanding of the con
sions concerning the initial part of the structural relaxat
processes demonstrated above, recall that one can d
scaling laws for an analytical description of the correlat
near their plateau values. This has been discussed com
hensively for the one-component system in Ref.@35#. The
theory is based on the observation that the liquid-glass t
sition is described by anA2 bifurcation of Eq.~2a! for the
glass form factors. It is straightforward to generalize t
theory for one-component systems to the case of interest
@46#. Let us merely note the basic results necessary to un
stand the following figures.

For the asymptotic expansion, one identifies a small
rameter s and, connected to it, a time scalets

5t0usu21/(2a). Here, the critical exponent 0,a,1/2 is one
of the nontrivial exponents of MCT that is calculated fro
the mode-coupling functional at the transition via the s
called exponent parameterl@l5G(12a)2/G(122a)#. The
separation parameters is also calculated from the mode
coupling functional, and is a smooth function of the cont
parameters that vanishes at the transition. The conditions
.0 ands,0 characterize glass states and liquid states,
spectively. Settingt̂5t/ts , one obtains an expansion in th
small quantityAusu,

F~q,t !2Fc~q!5H~q!Ausug~ t̂ !1H~q!@ usuh~ t̂ !1sn#

1K~q!@ usug~ t̂ !22s/~12l!#

1K̄~q!s/~12l!1O~ usu3/2!. ~15!

FIG. 12. Structural relaxation dynamics~solid lines! as defined
by Eqs.~3! for a binary HSM withd50.6 andw50.515, with small

particle packing contributionsx̂B50.2, 0.1, and 0.05 as indicated
The dashed lines are the solutions for the same parameters o
general MCT equations,@Eqs. ~1!#, with the time scaled to match

the structural-relaxation solution at long times forx̂B50.2.
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Let us first explain the leading-order contribution, that
given by the first line of Eq.~15!. It demonstrates the so
called factorization theorem, in that it splits the wave-vec
and control-parameter dependence off from the time dep
dence. It is the critical eigenvectorH(q) introduced above
that governs the former. The latter is given by a master fu
tion g( t̂ ) that is the solution of

d

d t̂
E

0

t̂
g~ t̂2t8!g~ t8!dt85lg~ t̂ !21sgns, ~16!

obeyingg( t̂→0);(t/t0)2a. The shape functiong( t̂ ) does
not depend on the details of the mode-coupling vertices,
only on the exponent parameterl. Thus, the factorization
theorem predicts that all correlators for all models result
in the samel can be rescaled to have the same shape, g
by the master functiong( t̂ ).

The corrections to the specified scaling law are given
the terms of orders in Eq. ~15!. They consist of a part
parallel to the critical amplitudeH(q), where a new
correction-to-scaling shape functionh( t̂ ) and a constant de
termined by the details of the mode-coupling verticesn ap-
pear. In addition, two correction amplitudesK(q) and K̄(q)
to be evaluated from the mode-coupling functional, are
troduced by the next-to-leading order. They explain that f
torization holds with different quality for different correla
tors. One finds theKAA(q) and K̄AA(q) to show the same
qualitative variation withq in the HSM considered here as i
the one-component case discussed in Ref.@35#. The only
parameter that cannot be calculated within this approac
the time scalet0; it is fixed by matching the long-time limit
of the asymptotic solution at the critical point,Fc(q,t)
5Fc(q)1H(q)(t/t0)2a1O(t22a), to the numerical solu-
tion at long times.

We first investigate the variation ofl as a function of the
composition, shown in Fig. 13. The exponent paramete

the

FIG. 13. Exponent parametersl corresponding to the points
shown in the transition diagram, Fig. 1; symbols indicated50.6
~diamonds!, 0.7 ~squares!, and 0.8~circles!. The lines are guides to
the eye.
2-11
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larger than the value found for the pure hard-sphere sys
l( x̂B50)5l( x̂B51)50.736. It exhibits a maximum
smaller than 0.8 ford>0.6. As a result, the critical exponen
decreases relative to the valuea50.311 for the hard-spher
system. In particular we getl50.752 (0.778), and from this
a50.304 (0.291) forx̂B50.1 (0.2). As a consequence, th
stretching of the decay towards the plateau increases so
what with increasingx̂B and decreasingd. But this effect is
rather small and cannot explain the slowing down eff
specified above.

Figure 14 shows the critical amplitudesH(q) in the case
d50.6 for the AA correlator. The normalized quantit
ĥAA(q)5HAA(q)/SAA

c (q) was chosen to match the represe
tation of Figs. 8 and 9. While there is no general trend va
for all q, we note that at the wave vectorq55.4/dA shown
above,ĥAA(q) decreases significantly upon increasingx̂B .
Let us emphasize that the region ofqdA&10 is the one ac-
cessible in dynamical light-scattering experiments on col
dal systems. Furthermore, let us add that qualitatively
same change withx̂B , although less pronounced, is observ
in thed50.8 case. The decrease ofĥAA yields a flattening of
the f̂(t)-versus-logt curve within the time window that can
be described by the leading-order contribution to Eq.~15!.
The identified effect is further increased since the time sc
t0 decreases with increasingx̂B . One gets t0

50.4408 (0.2026, 0.1385) forx̂B50 (0.1, 0.2) and other
microscopic parameters as given above.

Let us turn the preceding discussion into a quantitat
demonstration by comparing in Fig. 15 the asymptotic f
mula with the complete solution for thef̂AA correlator. The
casex̂B50 shows a typical scenario for the one-compon

system, where theAusu term of Eq.~15! describes over three
decades in time of the solution, as indicated by the o
diamonds. This window of the analytic description is e
panded by the next-to-leading-order formula by about 1
cade both at short and at long times, as can be seen from

FIG. 14. Normalized critical amplitudes ĥAA(q)

5HAA(q)/SAA(q) for d50.6 and x̂B50.0, 0.1, and 0.2 as indi
cated.
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circle symbols. Forx̂B50.1 and 0.2, the range of validity fo
both the leading and the next-to-leading order is seen
shrink; at x̂B50.2 it is, including corrections, only about
decades. But to understand this, one has to keep in mind
the distance from the critical point has increased by chang
from x̂B50 to x̂B50.2 for fixed total packing. Indeed, w
get s520.0027 (20.0066,20.011) for x̂B50 (0.1, 0.2),
i.e., an increase ins by about a factor of 4. Thus, the de

FIG. 15. Asymptotic description of the normalized correlati

functions f̂AA(q,t) for qdA55.4, w50.515, d50.6 and different

x̂B as indicated. The solid lines are the full solutions reproduc
from Fig. 9, but plotted as functions oft/t0. The time scalet0 is

0.4408, 0.2026, and 0.1385 forx̂B50, 0.1, and 0.2, respectively
Dashed and dash-dotted lines show the results of Eq.~15! up to
order usu1/2 and usu, respectively. The diamonds~circles! mark
where the asymptotic solution up to leading~next-to-leading! order

deviates by 0.01 from the normalized correlator. Curves forx̂B

50.1 (0.2) have been translated along thet axis by 2~4! decades
for clarity.

FIG. 16. Asymptotic description of the normalized correlati

functionsf̂AA(q,t) for qdA55.4, d50.6 andx̂B50.2 at differentw
as indicated. Lines and symbols as in Fig. 15; open symbols refe
w50.515 and closed ones tow50.5185.
2-12



u
e

r t

n
in

e
re
e

m

yt
in

e
ay

e
in
t

th
n
h
s

d
o

on

ir
e

on
th
rs
,

he
d
1
av

ng
en

it
ig
at
x
o

e
i

lt
n

.

ain
of

ef.
ory
ear
e.
lso
ary
me

as

rt-
wn
ran-

era-
a

ir
es-
ture

s
re-

ar-
es
rs

n-

ould
to

that

r
tion
f.
ex-
au

ac-

size
s
re-

eas-

or
This
ein-

EFFECT OF COMPOSITION CHANGES ON THE . . . PHYSICAL REVIEW E 67, 021502 ~2003!
creasing quality of the asymptotic description is merely d
to an increase ofs. This is corroborated by Fig. 16, wher

the x̂B50.2 case is repeated together with a point close

the transition. Forx̂B50.2 andw50.5185, the separatio
parameter iss520.0028, similar to the value discussed

Fig. 15 for x̂B50. Therefore, the regions of validity of th
asymptotic expansions are similar as well. Indeed, the
evant quantity specifying the range of validity of th
asymptotic expansion is not the size of the logarithmic ti

interval, but the size of the decay intervaluf̂AA(q,t)

2 f̂ AA
c (q)u. Figures 15 and 16 demonstrate that the anal

formula, @Eq. ~15!# describes the structural relaxation

f̂AA(q,t) towards the plateauf̂ AA
c (q) below 0.70, 0.85, and

0.90 for x̂B50, 0.1, and 0.2, respectively. This is the regim
where Fig. 9 exemplifies the slowing down of this dec
with increasingx̂B that was reported in Ref.@1#.

VI. CONCLUSIONS

Within the mode-coupling theory~MCT! for a binary
hard-sphere mixture, four mixing effects have been identifi
for states near the ideal liquid-glass transition. First, mix
suppresses intermediate-ranged ordering effects and
leads to an increase of the small wave-vector limit of
total structure factor,~Fig. 3!. Equivalently, the compressio
modulus of the liquid decreases. A similar softening of t
elastic restoring forces is found for the moduli for compre
sion and shear of the glass near the transition points,~Fig. 7!.
Second, an apparently opposite phenomenon is exhibite
the increase of the Debye-Waller factors, i.e., a stiffening
the glass with respect to spontaneous density fluctuati
~Figs. 5 and 6!. This means primarily that mixing for fixed
packing leads to better localization of the particles. The th
effect is closely related to this, viz., a stiffening of the cag
of the localized particles upon changes of compositi
These changes are described by the critical amplitude,
decreases upon mixing, as shown in Fig. 14. The unive
MCT formula for the initial part of the structural relaxation
@Eq. ~15!#, shows that this leads to a slowing down of t
short-time part of the glassy dynamics, as demonstrate
Figs. 8 and 9 and discussed quantitatively in Figs. 15 and
The above described second and third mixing effects h
been identified originally in experiments on colloids@1#.

The fourth general effect concerns the scale for the lo
time relaxation, i.e., the scale for hydrodynamic phenom
such as diffusion, or, more generally, for thea-relaxation
processes of the liquid. Two scenarios are found as exhib
by the liquid-glass transition diagram, by Fig. 1, or by F
11. For small size disparity, mixing stabilizes the glass st
As described above for the initial part of the structural rela
ation, also the final part of the decay is slowed down up
mixing. This is shown in Fig. 8 for the size ratiod50.8.
However, for larger size disparities, an entropically induc
plasticizing effect is found. Due to mixing, the glass state
destabilized and thea-relaxation times decrease. As a resu
the f̂(t)-versus-log(t) diagrams cross upon mixing as show
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in Fig. 9 and observed ford50.6 in the experiments of Ref
@1#.

In summary, our work demonstrates that MCT can expl
qualitatively the mixing effects on the glassy dynamics
colloids observed for the size ratiod50.6. A quantitative
comparison of the results of our theory with the data of R
@1# will be discussed in a subsequent publication. Our the
suggests to also carry out experiments for a size ratio n
d50.8 since a different scenario is predicted for that cas

It can be expected that the results of our theory will a
be of some relevance to experiments on glass-forming bin
metal alloys. The formation of metallic glasses can to so
extent be understood by treating the constituent atoms
hard spheres, which will then be all of similar size@47#. Even
though in this paper we have dealt only with Brownian sho
time dynamics relevant for colloidal suspensions, it is kno
that the long-time phenomena connected with the glass t
sition are the same for Newtonian dynamics@28,29#. Re-
cently, the concentration dependence of the critical temp
ture Tc was discussed for a computer simulation of
Co1002xZrx model@48#. This simulation used fine-tuned pa
potentials to model the metallic glass former; but if one
timates the size ratio of a corresponding hard-sphere mix
from the atomic radii of Co and Zr@49#, one getsd'0.78.
Indeed, in the simulation the curveTc(x) was found to have
a maximum at intermediatex, i.e., the glass transition wa
found to occur at smaller coupling strengths. But this cor
sponds to a decrease ofwc in the HSM model. A similar
reasoning holds for computer-simulated Ni-Zr melts@13#.

Let us add some remarks on the results derived by H
bola and Das@24#. Their equations, as opposed to the on
studied in this paper, predict for the glass form facto
f̂ ab(q) and for the critical packing fraction of the glass tra
sition wc, a dependence on the mass ratiomA /mB of the two
species. This result appears surprising because one sh
not expect the equilibrium results for a classical system
depend on the particles’ inertia parameters. It is obvious
the limit of vanishing concentrationxB has to reproduce the
bell-shaped Lamb-Mo¨ßbauer factor for the glass form facto
of the minority species, as discussed above in connec
with Fig. 5. This result is not obtained in the theory of Re
@24#, which, as a consequence, does not reproduce the
perimental finding of an increase in the correlator’s plate
values upon mixing@1#. Furthermore, the theory of Ref.@24#
predicts a much larger increase of the critical packing fr
tion wc upon mixing than measured@1#. Indeed, it predicts
that the glass transition can disappear completely if the
ratio d is smaller than a critical value. This result seem
implausible, since there is no obvious mechanism that p
vents the large particles from becoming a glass upon incr
ing the density.
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